2017年10月12日 星期四
遥不可及的未知世界越来越清晰了
——解读2017诺贝尔三大科学奖
王艳红 胡丹丹 黄堃

    为什么含羞草叶子在黑暗中仍按昼夜规律开闭,人在亮如白昼的办公室里待到半夜照样犯困?在生物体内,无数复杂的分子不断地运动着,这些分子在特定瞬间到底是什么模样?时空旅行是否只是一个幻想?和地球之外的生物是否可以进行时空对话?......

    金秋十月,2017诺贝尔大奖在万众瞩目中揭开了谜底,三名美国科学家杰弗里·霍尔、迈克尔·罗斯巴什和迈克尔·扬获得诺贝尔生理学或医学奖,诺贝尔化学奖授予了瑞士科学家雅克·杜博歇、美国科学家约阿希姆·弗兰克以及英国科学家理查德·亨德森,来自美国的三名科学家雷纳·韦斯、巴里·巴里什和基普·索恩捧回诺贝尔物理学奖。他们,通过对真相的不懈探知,使那些看起来遥不可及的未知世界变得越来越清晰了。人类离世界的真相越近,对命运的掌控能力就越强,这些大奖的摘得实至名归。

    生命时钟的振荡器

    从蓝绿藻到真菌、从植物到动物,地球生命普遍拥有一套内置的时钟,以24小时为周期调节生理活动,以适应我们这颗行星的自转和昼夜变化。获得2017年诺贝尔生理学或医学奖的三位科学家,在分子水平上揭示了生命时钟怎样“滴答”走动。

    人们很早就发现生物节律特征可以遗传,随着分子生物学发展,科学界逐渐提出“生物钟基因”的设想。20世纪70年代,美国加州理工学院的西摩·本泽和罗纳德·科诺普卡用果蝇做实验,筛选相关的基因突变,从而定位到了生物钟基因,命名为“周期”基因。但限于技术发展水平,人们当时无法弄清这个基因的代码序列,因为克隆果蝇DNA的技术于70年代晚期才出现。

    1984年,三名美国科学家,杰弗里·霍尔、迈克尔·罗斯巴什和迈克尔·扬克隆出了“周期”基因,并把它编码的蛋白质命名为PER。他们发现,果蝇体内的PER蛋白质浓度有规律地变动,振荡周期正是24小时。至此,人们找到了生物钟的“振荡器”,看到了它的振荡,接下来就是弄清工作原理。

    霍尔和罗斯巴什提出了一个“负反馈”机制:PER蛋白质浓度上升会抑制“周期”基因的活动,阻止基因制造出更多的PER蛋白质,导致浓度回落。抑制基因活动必须在细胞核里进行,而PER蛋白质自身无法进入细胞核,需要另一种蛋白质的协助,即扬于1994年发现的第二个生物节律基因“无时”,其编码的蛋白质被称为TIM。PER蛋白质浓度比较高时,能与TIM蛋白质结合,从而获得进入细胞核的“通行证”。

    此后还发现了其他几个相关基因,涉及到PER蛋白质的降解、“周期”基因的启动等,与前两种基因共同构成“转录翻译反馈回路”(TTFL),这就是果蝇生物钟的核心振荡机制。

    时隔30多年后,霍尔、罗斯巴什和扬因为这一研究发现最终摘获诺奖。霍尔在获奖后接受美联社采访时说,弄清这一机制有助于解决因昼夜节律紊乱导致的睡眠问题。

    “抓拍”生命分子的高清照片

    在生物体内,无数复杂分子不断地运动着,形成又拆解、结合又分离,通过这些过程来实现各种生理功能。如果能任意“抓拍”高清照片、看清某个分子在特定瞬间的模样,将使我们更深入地理解生命如何运作。

    近几年来迅速窜红的低温冷冻电子显微术(Cryo—EM)就是这样一种“抓拍”手段。2017年诺贝尔化学奖的三位获奖者对该技术的发展作出了关键贡献。

    过去约一百年来,对生物分子结构的研究主要依赖于X射线晶体学,即通过X射线在晶体里的衍射情况推断原子在空间里的排列,这项技术曾揭示了DNA双螺旋等诸多重要结构。但生物体内的很多大分子难以结晶,没法让它们“列队摆拍”;还有些分子虽然能结晶,但会改头换面,拍不到它们的“工作照”。于是,人们把目光转向了另一种高精度观察工具——电子显微镜。

    电子显微镜利用原子对电子的散射来揭示物质结构,电子能量越高、速度越快,“尺子”的刻度越精细。但电子束会破坏生物细胞和分子,而生物材料在电子显微镜下的成像能力差,即使用最强力的电子束透射,图像对比度也很低。

    20世纪80年代初,工作于欧洲分子生物学实验室的雅克·杜博歇提出了“急速冷却”方案,奠定了低温冷冻电子显微术样本制备与观察的基本技术手段。冷冻可以对样本起到保护作用,但通常的冷冻过程中,样本里的水会结成冰晶,可能使物质结构发生改变。更重要的是,冰晶会“喧宾夺主”,使电子发生强烈衍射,干扰观测。杜博歇用液氮对生物大分子溶液薄膜进行瞬间冷冻,使水来不及结晶而是形成无定形的“玻璃态”,就不会产生衍射。

    电子显微镜观测的样本通常是只含一层分子的薄膜,可以视为二维的。对大量散布的同一种分子拍摄二维图像,再把这些图像整合起来,就可以得到该分子的三维图像。20世纪70年代,在纽约沃兹沃思研究中心工作的约阿希姆·弗兰克开始进行这种“三维重构”的理论研究,开发出了多种数学工具和图像处理方法。

    1990年,英国剑桥分子生物学实验室的理查德·亨德森小组报告了他们对一种色素蛋白进行的三维重构,这项成果是低温冷冻电子显微术的重要里程碑,证明“冷冻样本-二维成像-三维重构”的确可以得到高分辨率的三维图像。它标志着一种研究生物大分子结构的新方法已经成形,其思路与X射线晶体学迥异,可以给生物体内溶液中、处于工作状态的分子“抓拍”快照。

    近几年来,传统的电子显微术照相机被可以直接检测电子的设备取代,解决了长期以来的图像转换导致细节丢失问题,这个重大进展也是亨德森的贡献。辅以新的高分辨率图像处理算法,以及突飞猛进的计算机运算能力,低温冷冻电子显微术的“高清时代”终于来临。

    探测“时空的涟漪”

    我们可以通过倾听声音来分辨乐器的种类和质地,物理学家也通过类似方式来研究宇宙。引力波就是这样一种“时空的涟漪”,它能被极为灵敏的探测器“听”到,向我们传递宇宙的信息。

    根据爱因斯坦相对论,时空是可以弯曲的,有质量的物体在其中运动,就会产生引力波,这就好比石头丢进水里会产生水波。但普通物体产生的这种引力波极为微弱,连爱因斯坦自己也认为很可能无法观测到。因斯坦发表相对论百年来,许多预言,如水星近日点进动以及引力红移效应都已获证实,但引力波一直没有被探测到。

    今年的获奖者创建和领导了“激光干涉引力波天文台”(LIGO)项目,该项目有两个引力波探测器,分别建在相距3000公里的美国路易斯安那州利文斯顿市与华盛顿州小城汉福德市。每个探测器有两个L型的长臂,每个“臂长”为4公里。

    这样巨大的实验装置,是为了通过长距离的激光干涉,尽可能放大引力波的影响。当源自遥远宇宙的引力波传到地球时,在实验装置中只会引起相当于原子核万分之一大小的变化。如此微弱的信号也能被这套装置探测到。研究人员认为,这是迄今最精密的科学测量设备。

    2015年9月14日,LIGO项目终于探测到来自于13亿年前一个双黑洞系统合并的引力波信号。随后,科学界又三次探测到了引力波。最后一次是在今年9月27日,美国和欧洲两个引力波项目组宣布,首次共同在8月14日探测到一次引力波事件。

    引力波开启了人们认识宇宙的新途径。通过分析引力波信号,我们可以判断出遥远宇宙中发生了什么。比如2015年的这次引力波事件,可以推断出两个黑洞合并前的质量分别相当于36个和29个太阳质量,合并后的总质量是62个太阳质量,相当于3个太阳质量的能量以引力波的形式在不到1秒的时间内释放,是宇宙中的一场巨变。

    LIGO项目组发言人、路易斯安那州立大学物理学家加布里埃拉·冈萨雷斯说:“这一发现是一个新时代的开端,引力波天文学现在成为现实。”

    至于引力波在实际生活中有什么应用,科学家说,包括时空旅行这样的科幻设想还早得很,而利用引力波的宇宙通信目前来看也很遥远。不过引力波的发现无疑打开了一扇新的大门,给未来增加了更多新的可能。(据新华社) 

京ICP备06005116