当前,新冠肺炎疑似病例基数庞大,给临床一线诊疗带来巨大压力,疫情波及地域广泛,基层医院缺乏经验,面临严峻挑战。
近日,由清华大学精密仪器系尤政院士、临床医学院董家鸿院士领导研发的新型冠状病毒肺炎智能辅助诊断系统成功通过应用测试,进入临床试用阶段,有望为上述难题提供解决方案。
董家鸿介绍,新型冠状病毒肺炎智能辅助诊断系统可同步实现智能化影像诊断、临床诊断及临床分型三大功能。该系统包括三大模块,其中影像诊断模块主要基于对新型冠状病毒肺炎初诊病例的珍贵临床资料的大数据分析,使用人工智能算法深度学习该疾病的CT影像特征,实现对新型冠状病毒肺炎影像的智能识别。临床诊断模块则依据卫健委发布的《新型冠状病毒感染的肺炎诊疗方案(试行第五版)》,结合影像与流行病学、症状及关键检验数据等临床信息,实现智能诊断。临床分型模块通过智能判读呼吸功能参数,“自适应”判断新型冠状病毒肺炎的严重程度。
董家鸿谈到,该系统可在短时间内完成大量疑似病例的胸部CT筛查、依据指南进行临床与影像相结合的综合分析,显著提升新型冠状病毒肺炎诊断效能,有望大幅降低临床医师及影像医师的工作负荷,同时使患者获得早期诊断和及时治疗,达到改善患者预后和降低病死率的目的。同时,该系统可赋能基层医院及社区卫生中心,提升基层医师对新型冠状病毒肺炎的诊断水平,促进不同层级医疗机构对这一新发传染病诊疗水平的同质化。再者,该系统能根据疾病严重程度进行精准分型,有助于患者的快速分类救治,合理化分配医疗资源。