欧洲联合环状反应堆(JET)将执行一系列氘氚核聚变实验,这是未来大型聚变实验前的一次重要彩排。
位于英国的JET正在筹备核聚变混合燃料的关键性测试,将最终点燃“国际热核聚变实验堆”(ITER)——全球规模最大的核聚变项目。太阳释放的能量即来自核聚变反应,如果ITER成功点燃,相当于物理学家在地球上驾驭了另一个“太阳”,将成为取之不尽、用之不竭的能源。
JET研究人员于去年12月开始用氚(氢的一种稀有放射性同位素)进行核聚变实验。今年6月,JET将启动等比例氘氚混合物聚变实验(氚是氢的另一种同位素)。ITER计划正是寄望于用这种混合燃料实现史无前例的聚变反应,实现能量输出大于输入。反应堆需要加热并约束氘氚混合等离子体,直到这些同位素聚合为氦时释放的热量能维持聚变反应。
“这些年一直在准备的事情终于到了实战节点,真是令人兴奋,”JET课题组领队之一Joelle Mailloux说,“我们准备就绪了。”
JET的实验将帮助科学家们预测ITER的托卡马克会遇到的各种情况,以便更为精准地设定后期大型实验的运行参数。ITER首席科学家Tim Luce表示,“以目前的装备来看,这是最接近ITER状态的实验。”他说这些实验是约20年奋斗的成果。ITER位于法国卡达拉舍附近,它将于2025年启动低能量氢核反应。但从2035年开始它将开始使用1:1比例的氘氚混合燃料。
JET隶属于英国牛津附近的卡拉姆聚变能研究中心。ITER和JET都是通过极强的磁场将等离子体束缚在环状轨道中并加热至引发核聚变。JET工作温度可以达到1亿摄氏度,数倍于太阳核心温度。
全球上一次用氚进行托卡马克核聚变实验的地方也是JET。当时的目标是打破能量峰值纪录,最终其能量输出输入比(Q值)成功突破了0.67。该纪录保持至今,Q值达到1意味着能量收支平衡。而今年的目标是将量级相当的聚变能量维持5秒或更长时间,以获取尽可能多的数据并理解维持时间更长的等离子体的行为。
据了解,此次实验与之前实验的一个主要区别是,JET内部用以保护设备免遭热辐射和中子轰炸、吸收等离子体中杂质的材料被更换成了和ITER一致的设计。由于这些材料也会反向辐射到等离子体中并引起冷却,所以了解它们如何影响聚变过程至关重要。(科文)