

中国工程院院士缪昌文:

用新技术"重塑"建筑材料性能

院上访谈会

◎本报记者 金 凤

近日,经国际小行星中心命名委员会批 准,由中国科学院紫金山天文台发现、编号 为 578168 号的小行星正式以缪昌文之名命 名。又一颗"科技之星"闪耀苍穹。

缪昌文是著名建筑材料专家、中国工程 院院士、东南大学教授。他已在混凝土研究 领域深耕30余年。他先后带领团队参与多 个工程建设,包括长江三峡大坝、京沪高铁、 江苏田湾核电站、港珠澳大桥、南水北调等 国家重大工程,以及巴基斯坦卡拉奇核电 站、孟加拉国帕德玛大桥、伯利兹的瓦卡水 电站等国外工程。

水泥混凝土是使用量巨大、用途广泛 的人造材料。在缪昌文看来,数字化、信 息化、智能化等趋势,将"重塑"混凝土材

"进入大数据时代,借助人工智能、大 数据等技术,可以设计混凝土内部的结 构。最近,我们也在研究如何用人工智能 技术,延长混凝土材料的使用寿命、节能减 排。"缪昌文在接受科技日报记者访谈时说, 目前重大工程使用的混凝土材料的设计寿 命为100-120年,他们希望通过人工智能 技术,将混凝土的设计寿命延长到200年。

部分技术达国际 "领跑"水平

记者:混凝土是重要的基础建筑材料。 当前,我国的建筑材料的发展在国际上处于 什么水平?

缪昌文:混凝土材料是重大基础设施的 重要物质基础与载体。据统计,我国每年生 产80亿一100亿吨混凝土,产量占全球50% 以上,已成为世界上最大的基础设施建筑材 料生产和使用国家。

目前,我国85%的桥梁采用钢筋混凝 土,高速铁路中混凝土和钢材占比90%以 上,绝大部分水工工程属于混凝土结构。

在混凝土高性能的应用基础理论与关 键技术方面,我国在国际上达到"并跑"水 平,部分新材料、新技术在国际上达到"领 跑"水平。我国混凝土材料研究水平与应 用成果登上了一个新台阶,科研人员陆续 攻克了现代混凝土收缩开裂等国际难题, 突破了超高性能混凝土关键技术,构建了 长寿命耐久性提升体系,发明了新一代聚 合物外加剂,成果支撑了港珠澳大桥、白鹤 滩水电站、深中通道、田湾核电站等国家重 大工程建设,对于保障工程百年服役寿命, 助力核电、高铁技术走出国门发挥了重要 作用。

然而,需要注意的是,在建筑材料共性 基础理论与前沿工程技术方面,我们和国际 顶尖水平还有差距。

记者:您曾带领团队为100多项国家重 大工程建设提供支撑。在不同时代、不同功 能的工程建设中,混凝土发挥的作用是否有 差异?如何根据不同需求做出调整?

缪昌文:我们国家重大工程的建设有很 强的地域属性、行业属性和时代属性。这些 重大工程年代不同、行业有差异,但混凝土 应用技术均扮演了至关重要的角色。

在建设三峡大坝时,工程面临超大体积 大坝混凝土温控问题,温控做不好,大坝就会 产生裂缝。面对工程实际需求,团队驻扎工 程现场,对使用的原材料、配比与外加剂的适 应性进行反复试验,重点控制混凝土中水泥 水化导致的温升值。最终,相关研究成果应 用于三峡大坝三期工程中。同时,结合在施 工过程中进行温度控制,确保大坝浇筑后没 有产生一条温度裂缝,进一步在技术上保障

了工程的结构安全。 核电站的核岛混凝土是技术要求最高 的一类特种混凝土,其混凝土外加剂一直 被国外垄断。我们组建了一支以无机材料

与有机化学专业交叉协同的创新团队,从 有机材料分子角度重新构筑外加剂结构。 经过反复试验,我们的成果满足了工程的 技术需求,在田湾核电站核岛混凝土中首 次实现外加剂的国产化,打破了国外的垄 断,实现混凝土外加剂技术从"跟跑"到"并 跑"的进步。

建设港珠澳大桥时,我国的混凝土工程 技术自主化水平得到全面提升。例如,沉管 隧道最大水深达46米,这对沉管隧道混凝 土提出了更高的要求:一方面,要控制混凝 土的稳健性和均匀性,还要在数小时内保持 混凝土的可泵送性;另一方面,要控制混凝 土收缩裂缝的产生。

因此,研究团队在设计混凝土外加剂 时,充分考虑与现场原材料的协同适应,并 结合对施工环境变化进行调整,满足工程技 术需求,为港珠澳大桥6.6公里沉管无裂缝 作出贡献。

目前,我们团队的技术已开始用于海外 工程,包括巴基斯坦卡拉奇核电站、孟加拉 国帕德玛大桥、印尼雅万高铁等重大工程。 我们不断推动混凝土外加剂与应用技术的 创新与发展,也提升了我国混凝土外加剂的 国际竞争力。

数字化转型助力 建筑材料发展

记者:建筑材料领域发展趋势如何,面 临哪些挑战?人工智能、大数据等技术为建 筑材料领域带来了哪些变革?

缪昌文:高强韧、高耐久、绿色低碳的建 筑材料是支撑重大基础设施安全、长寿、可 持续使用的关键。当前,高原铁路与水电 站、跨海隧道等战略性重大工程项目陆续规 划与建设,基础设施建设的数量、广度和地 域范围不断扩展,基础设施运行服役面临更 加复杂的荷载、更加严酷的环境与条件更加 极端的应用场景。这些都给建筑材料的发 展带来挑战。

数字化转型为建筑材料高质量发展提 供了重要支撑。近年来,人工智能技术兴 起,以高通量计算、大数据库和机器学习等 多源信息结合的数据驱动设计,成为突破传 统局限的新兴路径,并可实现以性能需求指 导建筑材料逆向设计。人工智能、大数据等 技术可以有效赋能建筑材料的低碳化、绿色 化及功能化发展。

未来,这类技术将会更多地应用于建 筑材料的设计、开发与应用。我们团队也 在积极跟进相关研究工作,通过建立工程 材料大数据库,开发材料智能设计平台,实 现工程材料的高性能化,保障重大工程的

记者:在绿色低碳背景下,您认为建筑 材料应该进行哪些科技创新以促进全行业 的节能减排?

缪昌文:建筑材料是用量最大的基础材 料之一。建筑材料的低碳、绿色与可持续发 展是未来的主要方向。但是目前的建筑材 料存在碳排放高、能耗高、资源消耗量大的 问题。因此,通过科技创新助力碳达峰碳中 和目标达成,意义重大。可以在以下几方面 开展科技创新工作。

第一,从材料源头减碳,充分利用大宗 工业固废资源,开发新型低碳胶凝体系,减 少水泥熟料用量。第二,提升混凝土材料的 力学与耐久性能,提高结构承载力、延长服 役寿命,在同等条件下节约混凝土的用量。 第三,开发新型节能、保温、储能材料,例如 水泥气凝胶、储能混凝土等,减少建筑服役 过程中的能耗与碳排放。第四,开发新型、 低成本的碳捕集、存储和利用技术,例如水 泥全氧燃烧系统、CO2膜吸收技术等,实现 水泥混凝土行业的碳中和。

记者:混凝土开裂是影响建筑安全的 "杀手"。在20世纪80年代,该领域的研究 处于什么阶段?您当时为何要从事这项研 究,遇到过哪些挑战?

缪昌文:20世纪80年代,混凝土裂缝控 制技术相关研究尚处于起步阶段,主要体现

在以下几个方面:混凝土裂缝控制理论尚未 成熟,导致开裂问题难以进行量化评估;此 外,混凝土作为一种由水泥、砂石等构成的 传统材料,在当时尚未引入矿物掺合料、外 加剂等现代混凝土性能调控技术。

混凝土开裂问题在工程领域是一个 迫切需要解决的技术难题。同时,开裂还 严重影响着结构的耐久性和服役期间的

我选择这一研究方向,一方面是为了迎 接技术上的挑战,更为重要的是,我希望能 为保障国家工程质量和造福社会贡献自己 的力量。

在研究过程中,我们主要面临两方面的 挑战。一方面,裂缝的产生原因极为复杂, 需要材料科学与结构工程等跨学科开展跨 学科合作,而我们团队成员起初主要以无 机材料专家为主,需要通过学科交叉突破 这一局限。另一方面,将一项新技术应用 于重大工程项目中,往往需要经过长时间 的技术储备和试验验证,这需要我们有敢 于实事求是、长期坐"冷板凳"、持续开展研 究的心理准备。

可喜的是,通过努力,我们将过去的定 性控制裂缝变成了现在的量化计算控制裂 缝,在地下隧道工程、桥梁工程、核电工程、 大体积混凝土工程中真正实现了混凝土不 开裂,把不可能变成了可能。

促进科技与产业 "双向奔卦"

记者:您曾在江苏省建筑科学研究院 和企业工作多年,十几年前调入东南大 学。您为何会作出这些职业选择? 结合您 的经历,您如何理解科技创新与产业创新 的融合?

缪昌文:1982年我从南京工学院(东南 大学前身)毕业后,进入中国水利水电科学 研究院工作,两年后我又到江苏省建筑科学 研究院工作,一直做到研究院院长。2002 年,江苏推行技术开发型科研机构改制,江

■人物档案

缪昌文,中国工程院院士、东

苏省建筑科学研究院建筑材料研究所由事 业单位改制为民营企业"江苏博特新材料有 限公司"。改制后,科研人员的活力一下子 被释放出来了。大家努力提高科技创新能 力。那几年,我们一边加大力度研发混凝土 外加剂,一边广泛开拓市场,发挥人才优势 和科技优势,用5年的时间将公司的产值提 高了五六倍。

我的祖父是私塾先生,父亲是教师,所 以我从小就有个当老师的梦想。2011年,我 接受东南大学的邀请,进入材料学院工作, 终于实现了儿时的梦想。

如果说在研究院和企业的工作,是思考 如何从工程中发现问题,在工程中检验成果 的价值,那么进入高校做研究,则要从基础 理论层面,从材料的机制分析等角度阐释原 理,再指导工程实践。此前研究院的工作经 历,让我更加注重从应用层面开展基础研 究,将论文写在祖国的大地上。

近年来,我们也在尝试推动材料行业的 协同创新,希望以科技创新推动产业创新。 在东南大学与同济大学、清华大学等八所高 校及中国建筑股份有限公司等五家企业共 同组建的"先进土木工程材料协同创新中 心"中,高校和企业频繁交流学界的研究方 向和业界的发展趋势。有时企业会为高校 提供科研经费,供高校进行小试、中试等成 果转化试验;有时高校会为企业的技术开发 进行理论研究、量化分析。这种合作模式为 攻关行业关键共性技术、解决制约行业发展 的重点基础难题提供了重要支撑。

记者:当前,为了进一步激发科研人员 创新热情,我国鼓励科研人员创新创业,促 进科技成果转化。对此您怎么看?

缪昌文:我们不要害怕将科研人员推到 产业的大海里游泳,要宽容失败。即使有几 个项目"淹死了"也不要紧,要鼓励科研人员 勇于开展科技成果转化,将科技成果尽快应 用到产业发展中。同时,要向科研人员分配 合理份额的成果收益,完善科技成果转化激 励政策,激发科研人员创新创业的积极性, 促进科技与经济深度融合。对于青年科研 人员,要善于引路子、压担子、壮胆子,放手 让他们大胆探索。

南大学教授。长期从事土木工程 材料理论研究与工程技术应用研 究,多年来活跃在我国重大工程 建设项目第一线。先后承担国家 级、省部级科研项目30余项,在混 凝土抗裂关键技术的研究、重大 基础设施工程服役寿命及耐久性 能提升技术的研究、多功能土木 工程材料的研发等方面取得了多 项成果。

₭ 热点追踪

2023年我国大气二氧化碳浓度增量 略低于近十年平均水平

科技日报讯 (记者付丽丽)在中国气象局12月新闻发布会 上,《中国温室气体公报(2023年)》(以下简称《公报》)正式发 布。《公报》显示,2023年瓦里关全球大气本底站观测到的二氧 化碳年平均浓度为421.4±0.1ppm(百万分之一),与北半球中 纬度地区平均浓度大体相当,相比2022年增量为2.3ppm,与全 球同期增量相当,略低于近10年增量的平均值(2.4ppm)。

中国气象局科技与气候变化司副司长黄玮介绍,今年 是中国气象局连续第13年发布中国温室气体监测情况。 卫星遥感监测显示,2023年中国陆地区域年平均大气二氧 化碳浓度增量略低于过去10年(2014-2023年)平均增量 (2.4ppm)。甲烷和氧化亚氮年平均浓度分别为1986±0.6ppb (+亿分之一)、337.3 ± 0.1ppb,较 2022年增量分别为 8ppb、 0.8ppb,低于全球同期增量。2023年我国区域大气本底站观 测到的二氧化碳和甲烷浓度与2022年相比呈增加趋势。

黄玮表示,《中国温室气体公报》是中国气象局服务应对 气候变化工作及我国"双碳"目标的重要决策服务产品之一, 与世界气象组织发布的《全球温室气体公报》相呼应。世界气 象组织于今年10月28日发布的第20期《全球温室气体公报》 显示,2023年全球大气主要温室气体浓度继续突破有仪器观 测以来的历史纪录,二氧化碳、甲烷和氧化亚氮的年平均浓度 分别达到 420.0 ± 0.1ppm 、1934 ± 2ppb 、336.9 ± 0.1ppb,相对于 2022年年均浓度的增量分别为 2.3ppm、11ppb、1.1ppb。

据介绍,截至目前,中国气象局组建了包含1个全球大气 本底站、1个境外大气本底站、7个区域大气本底站、10个大气 本底试验站、120个高精度温室气体站在内的国家温室气体观 测网,实现对《京都议定书》管控的7大类30余种温室气体观 测,形成了集观测、运行监控、维护标校、质量控制、应用分析 等于一体的温室气体本底观测业务体系。其中,瓦里关全球 大气本底站是世界气象组织全球32个大气本底站之一,经过 30年建设,已实现对温室气体全天候、高密度观测,其观测数 据的可靠性和国际可比性得到了国际社会的普遍认可。

黄玮介绍,未来,中国气象局将加快构建覆盖我国主要城 市和区域的国家温室气体观测网,加强高精度大气温室气体 监测与动态分析,持续推动碳源汇评估与核算技术研究,为实 现我国"双碳"目标提供有效数据支撑。

国内首张草票发行

科技日报讯 (记者李诏宇)记者12月6日获悉,我国首张 草票在内蒙古自治区包头市达尔罕茂明安联合旗发行。"达茂 草票"是我国变现草原生态产品价值的典型案例。

我国草原广袤辽阔,占地近40亿亩,约占据国土面积的 27.55%。草原具有巨大的经济、生态潜力和价值,对其进行合 理开发利用与生态保护,对促进地方经济社会发展和人民增

据了解,草票即一种将草原资源经济价值和生态价值票 面化的经济权益凭证。近年来,中国草学会草地资源与利用 专业委员会组织中国科学院地理科学与资源研究所、内蒙古 自治区林业和草原监测规划院、四川大学、西南民族大学等单 位,联合开展草原生态产品价值核算及其实现路径探索,提出 草票概念,并将其内涵扩展至草原碳票、草原沙票,形成"草 票+"机制。该机制的实施可以为协同推进基本草原保护与

高质量发展提供助力。 有关负责人介绍,以草票为抓手,有望解决草原资源生产 经营中草地经营权难流转、资源难变现、质量难提高等问题。 此外,草票模式的推广应用还能通过草地入股、草原变现、保 底分成、托管分红等多元合作方式,为牧户构建拿现金、取分 成、得租金、挣薪金、获股金等综合增收渠道,丰富草原资源保 护和修复方式,探索"经营得利、牧户得益、社会得绿"的草原 资源高质量发展与可持续利用改革新途径,实现草原资源的 保值增值。

下一步,有关部门将进一步探索草票的认购、交易、收益 权、质押与退出、配套安排等制度,进一步探索碳票、沙票等 "草票+"模式。

后备牛高质量培育 系列标准公布

科技日报讯(记者马爱平)记者12月6日获悉,在日前举 行的第四届国际后备牛大会上,后备牛高质量培育系列标准 发布。

该系列标准由中国农业大学国际后备牛培育协作创新平 台(以下简称"ICHO")联合中国奶业协会和43家协同共创基 地共同发布,其中包括《荷斯坦后备牛生长目标与评估规范》 《荷斯坦后备牛培育技术规程》和《荷斯坦后备牛福利与健康

据ICHO发起人、中国农业大学领军教授曹志军介绍,该 系列标准基于全国156个牧场439万条后备奶牛相关数据制 定,旨在全面推动后备奶牛饲养技术体系变革,提升我国后备 奶牛培育标准化进程。

"系列标准制定团队始终遵循'对得齐、够得着、吃得准、 做得全'的原则,确保牧业集团数据记录和分析方法统一性与 可比性,在国家标准之上增设更高标准,提升牧场培育质量。' 曹志军说。

在昆明奶业协会会长、云南海牧牧业有限责任公司总经 理李锡智看来,该系列标准依托多年的数据与科学研究,紧贴 生产一线。

"该系列标准是我们与ICHO一同整合校级资源与大型 牧业后备牛培育重点需求,深化校企合作、产教融合的重要成 果,将为后备牛培育提供科学、规范的指导。"嘉吉动物营养中 国反刍商务总经理张钢说。

致青年科技人才

青年科技人才要有思想、对事业忠诚,能干、肯干。

材料的研究涉及交通、建筑、水利水电设施等诸多与人民群众生活密切 相关的领域。青年科技人才要紧盯国家和行业发展需求,凝练科研方向,以 科技创新赋能中国建造,建设安全、舒适、绿色、智慧的好房子,满足人民群 众高品质居住需求。

青年科技人才要有家国情怀,有"春蚕到死丝方尽,蜡炬成灰泪始干"的 精神追求,还要有发现问题的敏锐度和解决问题的专业素养,为实现高水平 科技自立自强而不懈奋斗。

-缪昌文