科技日报北京1月14日电(记者刘 霞)据英国《独立报》13日报道,美国科学

家最新研制出一款蒸汽推进航天器。实验

室模拟表明,该航天器可从模拟物中提取 水,制造蒸汽推进航天器运行。研究人员 称,这款微波炉大小的设备,理论上可依靠

含水星球上丰富的水作为燃料,推动自身 在太空"永不停歇地"穿梭,从而改变人类

(WINE),由科学家与加州"蜜蜂机器人"

公司携手研制。去年12月底,研究人员在

实验室中,使用模拟的小行星材料对其进

行了首次测试。"WINE成功采集了土壤,

制造了火箭推进剂,并用从模拟物中提取

的水制造蒸汽来推动航天器自身的运行。"

佛罗里达中央大学行星研究员菲尔·梅茨

格博士说,"这一设备有望在月球、谷神星、

木卫二(欧罗巴)、土卫六(泰坦)、冥王星、

水星两极以及小行星等任何有水和重力足

电池板可为采矿和蒸汽制造提供能量,获 得的蒸汽可用于让设备从行星或小行星表

器远离太阳运行(例如在冥王星上运行), 航天器可利用其上搭载的放射性物质的衰

克尼说,目前,当航天器的推进剂用完之

时,便是其"寿终正寝"之日,前往其他星球 的探索任务也必须戛然而止,这其实意味

着大量资金和时间的浪费,而新航天器则

此外,该设备可依据它们部署的地方 不同,采用不同的方式工作。而且,太阳能

该航天器上还有备选方案:如果航天

"蜜蜂机器人"公司副总裁克里斯・扎

够低的星球上大展拳脚。"

面起飞,继续太空之旅。

据悉,这款设备名为"世界不够"

探索太空的方式。

蒸汽推进航 天器 可 在 停

有望在太空中永不停歇地穿梭,因此,"有 可能改变我们探索宇宙的方式"。 WINE项目得到了美国国家航空航天 局(NASA)"小企业技术转让计划"的支持, 该计划旨在促进大学与企业之间的联系。 传统的航天器,一旦燃料耗尽就成了废

铁,只能在太空中游荡。如果燃料"用之不 尽"会怎样?这款蒸汽推进航天器能在小行 星上挖土,再从土里提取水制造蒸汽,为自 己补给。这样一来,它就能在太空中坚守岗 位、长期服役。虽然还不知道其制造蒸汽的 效率如何,但利用一切可以利用的材料,倒 是太空探索的好思路。从地球出发,航天器 就是一腔孤勇地踏上了征程。现在,把那些 小行星都看作加油站,探险也仿佛有了助 力,宇宙也仿佛充满了温情。

# "拂晓"号发现金星云中巨大条纹结构

科技日报东京1月14日电(记者陈 超)日本神户大学、宇宙航空研究开发机构 等组成的研究小组近日宣布,他们通过"拂 晓"号金星探测器发现,覆盖金星的云中存 在巨大的条纹结构,并通过大规模数值模 拟,再现并阐明了条状结构的机理。

金星上空45-70公里处被厚厚的硫 层覆盖,观测困难,因此金星的大气现 象尚有许多未知部分,如大气超循环等。 调查金星气象,可加深对地球气象的特殊 性和普遍性的理解。

"拂晓"号首次观测到金星北半球从西北 至东南方向、南半球西南至东北方向有数条 宽幅数百公里、延伸近万公里的白色条状结 构,呈南北对称贯穿赤道。研究小组将其命 名为"行星规模条状结构"。这种巨大条状结 构在地球上尚未观测到,是金星特有的现象。

研究人员将"拂晓"号上的IR2照相机

值模拟计算程序"AFES-Venus"的高解析度 模拟进行了分析比较,发现行星规模条状结 构的成因关键是"寒带喷射气流"。在地球 的中高纬度地带,消除南北大温差的大规模 流动(倾斜不稳)形成温带气旋、移动性高气 压和寒带喷射气流。模拟结果显示,金星大 气云层也有同样作用机理,在高纬度带形成 喷射气流;而在低纬度带,由于大规模流动 分布和行星自转效果的大气波动(罗斯比 波),会出现从赤道至纬度60度附近的巨大 涡旋。喷射气流加入其中,形成涡旋倾斜、 伸展,北风和南风冲突形成条纹状会聚区。 在会聚区,南北风变成强烈下降流,在薄云 层领域形成行星规模条状结构。罗斯比波 与云层下部的横跨赤道的波动(开尔文波) 结合,因此维持了南北对称性。

捕捉的金星下层云详细数据,与金星大气数

研究成果刊载在近期的《自然•通讯》上。

## ■创新连线·俄罗斯

## 等离子火箭发动机可行性初获证实

俄罗斯科学院西伯利亚分院核物理研 离子体陷阱,有助于检验有关的全新构想,让 究所利用最新的热核等离子体抑制装置,初 步实验证实了制造等离子火箭发动机的可 能性。其工作原理是基于一种加速等离子 体流动的新方法,该方法与等离子体在磁场 中的特别排列有关,由于转动方向不同,等 离子体或停滞或加速,从而产生推力。该装 置可用于解决航天飞行器的发动机等问题。

该研究所副所长亚历山大·伊万诺夫称, 实验中的螺旋开放式磁陷阱装置,是一个等 俄罗斯距离制造热核反应堆又近了一步。 伊万诺夫表示,该试验装置由于使用了

临时零部件,所以运行受到一定的限制。初 步实验表明,效果还是有的。而且航天发动 机可以运转,也可以制造出减少等离子体流 失的设备。他说:"这个装置是一个演示器, 一个原型机,其内部的等离子体温度为10 万摄氏度,密度相当大。这对中子源来说远 远不够,但正是发动机所需要的温度。'

# 降血压纳米新药研制成功

种可降低血压的特殊纳米粒子,并在患有 高血压的老鼠身上进行了测试。该研究成

小剂量的纳米粒子使老鼠血压下降约 10-12毫米汞柱,而且一次摄入疗效可持 续近一周时间。此外,研究人员强调,实验 过程中动物没有任何不适感,也没有发生 摄入大量药剂的副作用。

患上极其严重的高血压。实验结果显示,

研究人员将这种药剂在老鼠身上做了

(本栏目稿件来源:俄罗斯卫星通讯

## 系黑洞在吞食恒星残骸

科技日报伦敦 1 月 13 日电 (记者田学 科)发生于去年年中的一次绰号为"母牛"的 太空大爆炸事件,一直困扰着全球天文学家 和天体物理学家。现在,一个包括伦敦大学 学院在内的多国科学家组成的研究团队,对 这场神秘爆炸作出了新解释。

此次天体爆炸事件已被正式命名为 AT2018cow, 简称"母牛"事件, 于2018年6月 被观测到。与之前见过的任何天体爆炸都不 同的是,其3天之内突然发出的爆炸光线至少

比典型的超新星亮10倍,然后在接下来的几 个月内褪色。这个不寻常的事件发生在武仙 座一个名为 CGCG 137-068 的恒星系附近, 距地球大约2亿光年远,由美国国家航空航天 局(NASA)资助的夏威夷小行星陆地撞击最 后警戒系统望远镜首次观测到。

母牛"太空大爆炸事件揭秘

研究团队使用NASA的多种设施采集数 据,包括尼尔·格雷尔斯雨燕天文台(Neil Gehrels Swift天文台,用于探测伽马射线爆发 的太空望远镜)和核光谱望远镜阵列(一种基

于太空的 X 射线望远镜)。结果发现,有证据 表明变成碎片的星是一颗白矮星,即一颗热 的、大约地球大小的恒星残骸,类似太阳这样 恒星的最终状态。主要研究人员、伦敦大学 学院天体物理学家库因认为,"母牛"在很短 时间内产生了大量的碎片,而像太阳这种体 积较大、密度较小的恒星,需要更大的黑洞, 在较长的时间内破碎并消耗这些材料。为 此,研究人员计算出与此次爆炸有关的黑洞 质量,约为太阳的10万到100万倍,几乎与主

星系的中心黑洞一样大。

在银河系中心之外看到这种尺度的黑洞 是不寻常的,"母牛"可能发生在附近的伴星 系或球状星团中,这里有较老的恒星群,可能 比一般星系拥有更高比例的白矮星。

该研究得到了英国航天局和英国科学技 术设施委员会的支持,主要成果发表于最新 出版的《皇家天文学会月报》上,并于近日在 西雅图举行的第233届美国天文学会会议上

# 苏伊士运河上的友谊之"桥"

## - 中国援助埃及创建科技评估中心纪实

## ┗"一带一路"科创故事汇③

本报记者 刘 霞

宽阔的苏伊士运河把中国和包括埃及在 内的非洲国家分隔开来,"一带一路"倡议却 缩短了两个大陆的距离,为中国和非洲国家 架起了合作共赢的"桥梁"。

乘着"一带一路"的东风,中国与埃及之 间的科技合作将奏出怎样美妙动人的乐章? 序曲要从中国帮助埃及打造科技评估体系并 构建国家评估中心开始。

从2015年埃及高等教育与科学研究部 (以下简称埃及教研部)首次拜访中国国家科 技评估中心(科技部科技评估中心),到随后3 次专程取经,再到最终签署合作协议,不到4 年时间内,中国科技评估"为顶层设计服务、 为科技创新献智"的理念已深入埃及很多科 技管理人员和科研人员的心中。

### 无心插柳柳成荫

说起科技评估与埃及教研部的"结缘", 评估中心国际评估与研究部杨云处长至今仍 记忆犹新:"2015年5月6日,埃及教研部部长 助理、研发创新计划主任哈泽曼·曼苏尔教授 和埃及科技发展基金会执行主任阿穆尔·阿 德利教授一行访问了科技部科技评估中心。 我们向他们介绍了科技评估在我国科技体制 改革中的角色和作用、科技重大专项监督评 估方法、自然科学基金管理与资助绩效国际 评估案例等内容。"

"所谓无心插柳柳成荫。我觉得,我们的 介绍向他们打开了一扇大门,引起了他们对 科技评估的强烈兴趣。"杨云对科技日报记者

"他们以前可能从来没有认识到科技评估 会在国家科技创新体系建设、科技管理体制改 革、国际科技合作等中发挥如此重要的作用 中国的科技评估不仅仅是技术的评估,还包括 对科技规划、政策、科技创新体系、人才、机构 等各方面的评估,旨在为顶层设计服务、为科 技创新献智,是科技决策支撑的关键。"

这次会面,宾主双方交谈甚欢,但故事并

2016年8月,埃及教研部前部长阿什拉 夫·希哈博士,率包括3名副部长级高官在内 的埃及教研部代表团一行7人,再次对评估中

在会谈中,"有备而来"的埃方抛出了很 多问题:如何组件一个专业化评估团队?如 何将评估结果有效运用于政策决策中? 如何 有效推动科技成果转化?中心逐一解答,并 向埃方介绍了评估结论和意见如何在政府部 门及科技管理决策中发挥有效作用。

阿什拉夫·希哈说:"埃及目前正计划开 展科技管理与评估体系建设,希望评估中心 可以通过中埃政府间合作渠道,为埃方构建 科技评估体系、建立埃及国家科技评估中心 提供全方位支撑。"

## 同舟共济扬帆起

不断的了解增强了彼此的信任。2017年9 月6日,科技部科技评估中心与埃及教研部在 宁夏银川举办的中非创新论坛上签署了合作 备忘录。科技部副部长黄卫等领导见证了签 约仪式。签约前,评估中心前主任王瑞军博士 与埃及教研部萨格尔副部长举行了工作会。 会上,萨格尔再次表明了埃方希望评估中心协 助建设埃及科技评估体系的迫切需求。

签约仪式后,黄卫和萨格尔先后提到评估 中心协助埃及建设科技评估体系的重要性和 必要性。黄卫表示,中埃两国科技合作中,应 充分发挥评估中心的作用。不仅要在科技评 估领域对埃及给予支持,还应该发挥科技评估 在两国科技合作中的桥梁作用,根据埃方的需 求带动并拓宽在其他技术领域的合作。

根据协议,评估中心将为构建埃及科技 i体系和埃及国家评估中心提供全方位技 术支撑,并据此推动在"一带一路"沿线国家 中传递中国科技评估理念和经验。



2018年11月5日至13日,埃及6家机构代表组成科技代表团,参加了科技部科技评估中 心举办的为期一周的科技创新评估高端培训,并在评估中心开展了两天的研修活动。

图片来源:科技部科技评估中心

## 一"桥"飞架中埃

如何帮助埃及构建评估体系? 杨云介绍 说:"中心计划分几步走:首先,我们需要了解 埃及科技创新体系的现状、实力、制度和组织 架构;然后,有针对性地提出相应的建议;接 下来,我们需要对其进行人员的能力建设、为 其培养相关人员并提供相应的指导。"

在此思路的指导下,2018年11月5日至 13日,由埃及教研部组织,包括埃及国家研究 中心、埃及科技发展基金、埃及科学研究与技 术研究所和埃及石油研究院等在内的6家机 构代表组成科技代表团,参加了评估中心举 办的为期一周的科技创新评估高端培训,并 在评估中心开展了两天的研修活动。研修期 间,中埃双方就科技战略、科技政策、科技计 划、科研机构、科技项目、科技人才及科技成 果转移转化的评估、科技评估方法研究与标 准构建、评估结果的报告和应用等议题开展 了深入讨论。研修结束后,代表团成员纷纷 表示参加此次研修培训收获巨大,希望能把 学到的经验运用到埃及自身的科技创新与评 估体系的创建中。

"评估中心计划于2019年向埃及派出团 组,开展更大范围的科技评估培训,并进一步 协助埃方尽快建立科技评估体系以及埃及国 家评估中心。"杨云说,"中国帮助埃方创建 评估体系、搭建国家评估中心,所获得的经 验,不仅能促进中埃科技合作,也能在'一带 一路'上搭建一座科技评估的'桥梁'。中埃 科技评估合作已作为重要议题纳入'一带一 路'科技创新合作中,预期科技评估未来将在 促进两国科技创新合作中发挥越来越重要的 (科技日报北京1月14日电)

## 通过释放一种蛋白质激素

## 运动有助防止阿尔茨海默病记忆损失

科技日报北京1月14日电(记者张梦 然)根据英国《自然·医学》杂志近日在线发 表的一项最新研究成果,美国与巴西联合团 队发现,一种运动诱发的蛋白质激素与阿尔 茨海默病的进展密切相关,其可以防止阿尔 茨海默病记忆损失,由此开发的治疗策略, 或将为缓解人类疾病相关的认知能力衰退 铺平道路。

由于尚不清楚发病机制,人们还不能从

根本上阻止或延缓阿尔茨海默病病程的进 展。已知运动有益于许多系统,包括大脑的 健康。过去的研究表明,体育运动或能增强 认知能力,甚至可能延缓阿尔茨海默病等神 经退行性疾病的进展。

在运动期间,一种名为鸢尾素的信使蛋 白由肌肉组织中释放出来,进入血液循环,并 对远处的靶标产生作用。美国哥伦比亚大学 与巴西里约热内卢联邦大学联合研究团队发 现,在阿尔茨海默病的小鼠模型中,鸢尾素会 增强运动的促认知效应。不仅如此,鸢尾素 及其蛋白前体 FNDC5 在阿尔茨海默病人大 脑里的表达水平,低于健康的对照组人群。 而研究人员在阿尔茨海默病的小鼠模型中也 观察到了这一现象。

团队还发现,正如降低FNDC5/鸢尾素 的基因表达会诱发学习记忆减退,恢复其表 达,竟然可以在小鼠模型中逆转上述效应。 此外,在阿尔茨海默病小鼠模型中,当脑内或 外周 FNDC5/鸢尾素的信号传导被阻断时, 体育运动的促认知效应也消失了。

这一发现或对于征服阿尔茨海默病意义 重大,将为设计新型治疗策略以缓解患者的 认知能力衰退打开一扇大门。目前还需要开 展进一步研究,才能更准确理解鸢尾素如何 进入大脑并与之交互,进而准确评估鸢尾素 在人体内所具有的相似促认知效应。

### 闻 顾 玉 际

## (1月1日—1月13日)

## 本期焦点

## 天文学家再次探测到重复快速射电暴

"加拿大氢强度测绘实验"(CHIME)发 现迄今记录到的第二个重复快速射电暴 (FRB),此前人类仅发现过一个可重复的快 速射电暴,这种物理起源仍然成谜的现象甚 至被认为可能是来自外星高等文明的信 号。此次新源头的出现,将极大促进天文学 家对这种神秘河外射电束的理解。

## 前沿探索

## "鸡尾酒式"新药可对抗所有已知埃博

美国研究人员开发出一种实验性药物

MBP134,由两种人体单克隆抗体组合而成, 可对抗包括最近在蝙蝠体内发现的邦巴利 病毒在内的所有已知埃博拉病毒,甚至为可 能出现的新型埃博拉病毒,提供了潜在的治

## 技术刷新

## 激光冷却造出零下273℃中性等离子体

科学家利用激光冷却,创造出温度达 到零下273℃的中性等离子体,其比太空深 处温度还要低,该成果显示了极端环境下 (比如白矮星和木星中央)等离子体的新的

人工智能可高准确率诊断遗传综合征 美国团队新研发的一款人工智能在接 受上万张真实患者面部图像训练后,能够以 高准确率识别罕见的遗传综合征。科学家 同时强调,由于个人面部图像是敏感但易得 的数据,因此必须小心处理,以防该技术的 歧视性滥用。

## 本期明星

## IBM 发布据称可"商用"量子计算机

国际商用机器公司(IBM)最新发布了 一款名为"IBM Q系统1"的量子计算机,是 据称可"商用"的量子计算机模型,也被称为 "世界上第一个专为科学和商业用途而设计 的、全集成通用量子计算系统"。也有观点 认为,该量子计算机仍然是一种实验设备, 或者说仍属于原型机,但其允许人们测试并

进一步开发在将来大有用处的编程。

### 本期之"首" 首次对地幔条件下的钙钛矿进行测量

日本团队报告了人类首次对硅酸钙 钙钛矿的基于实验的测量。硅酸钙钙钛 矿是一种极其重要的地幔矿物,但无法 稳定存在于地表。新研究结果支持一种 看法——上地幔底部存在俯冲洋壳区 域,穿过该区域的地震波被认为会出现 波速异常。

## 奇观轶闻

## 体内装盏"灯",恢复神经功能

一种通过电刺激和光输入来控制神经 活动的生物光电子系统研发成功,美国科 学家团队在实验中已可以恢复大鼠的膀胱 功能。经过进一步研发和测试,该系统或 能成为一种治疗疾病和器官功能障碍的新 方法。

(本栏目主持人 张梦然)

## 俄罗斯新西伯利亚国立大学研制出一 测试,这些老鼠在精神紧张的情况下容易

果刊登在《高血压杂志》上。 该大学生物学家阿霞•莱温娜称:"我

们的药物是由纳米粒子和短DNA分子构 成的复合体。纳米粒子帮助DNA分子进 入细胞,与信使RNA结合,阻止蛋白质形 成,因此,细胞中的受体数量不会增加,血 压也不会升高。"

社 整编:本报记者 董映璧)