
印象中,每

到夏秋季节,台 风都会在我国沿 海城市一个接一 个地登陆,大有 "你方唱罢我登

场"的态势。

本报记者 付丽丽

"艾云尼"刚走,"马力斯"来了。6月12日上 午,随着"马力斯"在日本以东洋面变性为温带气 旋,中央气象台于当天上午8点钟对其停止编号。

下一个来的又会是谁呢?印象中,每到夏秋 季节,台风在我国沿海城市都会一个接着一个,大 有"你方唱罢我登场"的态势。看到此,有人不禁 会问,台风缘何多集中在这个时间爆发,台风预报 是怎样完成的,难度何在?

球的天气系统也会影响北半球台风的行进路径。 如2010年13号台风"鲇鱼",其从西太平洋进入南 海之后,出现了近90°的北翘,就与南半球冷空 气爆发有很大的关系。

张玲表示,台风是一个立体的柱体,不同高 度上环境大气对台风的影响力大小和方向可能 都不一样。"就如一个人站在那儿,一个人在上

面向一个方向拉他的胳膊,同时另一个人在下 面往另外一个方向拉他的腿,此时这个人往哪 个方向走,就比较难说了,预报员需要综合考 虑多方面因素,综合判断台风的主要引导气流 来自哪个方向,还有就是大多数台风的结构都 是不对称的,这种不对称也会对台风运动路径 产生影响。"

季风和副热带高压 致使夏季台风偏多

通常我们所说的台风,在气象上叫做热带气 旋,是指发生在热带或者副热带洋面上的低压涡

热带气旋根据强度不同,由弱到强,可分为热 带低压、热带风暴级、强热带风暴级、台风级、强台 风级和超强台风级6个等级。台风是指强度达到 热带风暴级及以上强度的热带气旋。

"影响我国的台风主要来自西太平洋和南海, 其活跃期是6月到11月,但生成最多的主要集中 在7月到10月。"12日,中国气象局台风与海洋预 报中心首席预报员张玲在接受科技日报记者采访 时说。

张玲介绍, 台风是由活跃的热带对流经组织 化以后形成的逆时针旋转的涡旋,一般来讲,南海 季风平均爆发在5月中下旬,之后向南海和西太 平洋输送大量的水汽和能量,构成台风最主要的 水汽和能量来源之一,同时,夏季在西太平洋和南 海还受副热带高压系统的控制。这样,季风条件 比较好,并且副热带高压也比较强,就有利于热带 对流的发展,从而形成有组织的逆时针旋转涡旋 的频率就更高些。

"其实,从历史上看,全年都有台风的生成,只 是在冬季台风生成的数会比较少。"张玲说。

象辑科技气象技术专家欧波也表示,从台风 活动上看,西北太平洋和南海一年四季都有生 成。在气象学上,台风是一个典型的中尺度气旋 系统,它多生在低纬度高温高湿的海域,生命史-般从几天到十几天。

"影响台风活动路径的最主要天气系统是西 北太平洋的副热带高压,台风的移动经常是在副 热带高压的外围引导气流作用下,分为西向、西北 向和偏北转向三种路径影响我国和东亚沿海各个 国家。"欧波说,此外,南海也是台风生成和发展的 一个源地,南海台风还具有生成发展快、移动路径 复杂、预报难度大等特点,这次的"艾云尼"就充分 诠释了这样的特点。

此前,"艾云尼"移动路径反复变化,曾三次在 我国登陆,这在历史上都是比较少见的。

有了风云卫星 我国预报能力进步快

台风预报难,究竟难在哪儿? 欧波表示,由于 台风的生消发展和移动变化多与海洋有关,且活 动区域又大都在远海,气象观测手段不像陆地上 那么多样,实况来源少、信息量不足,这在很大程 度上限制了台风的预报能力。

"与西太平洋台风相比,南海台风就相对难报 一些。"张玲说,这是因为在南海生成的台风一般 强度相对较弱、生命史也比较短,主要是因为南海 及周边海域生成的台风距离陆地较近,此类台风 还没能发展到很强就碰到沿海和陆地了,台风受 到下垫面地形摩擦作用后,其强度往往会较快地

另外,南海台风往往高低层引导系统不同,导 致台风结构不对称。一般情况下,南海台风中高 层位于南亚高压的南侧,盛行东北风,而低层受南 海季风影响,盛行西南季风,高低层引导系统不 同,台风结构往往不对称,所以不容易发展到很 强,加之周围环境引导系统比较弱,所以也不太好

把握它的走向,而且南海台风往往生成不久就登 陆了,留给预报员的反应时间也有限,所以情况比 较复杂,相对难预报。

欣喜的是,在欧波看来,这些年随着风云系 列气象卫星的业务化应用越来越深入,特别是 新一代风云四号 A 星也已经在 2016 年发射成 功,陆续还会有新的气象卫星投入业务使用,这 些卫星将提供分辨率更高、时效性更强的观测 资料,为台风的定位、定强以及预报提供了更为 有利的手段支撑。

特别是近十余年来,随着我国自主研发数值 预报系统的不断改进以及立体探测手段的不断丰 富,我国的台风预报能力进步很快。据权威部门 统计,我国24小时台风路径数值预报误差,已经 由 2003 年的 145 公里逐渐减小到 2016 年的 66 公 里。"就台风路径预报能力来讲,我国现在的预报 水平已处于国际先进行列,一点儿都不比美国、日 本差。"张玲说。

影响因素复杂 准确预报如解谜题

预报的呢? 欧波表示,目前台风预报的主要方法是以数 值天气预报为基础的客观预报方法。数值预报技 术是把大气模拟成一个复杂的闭合方程组,通过 赋予初值和给定边界条件,利用超级计算机来计 算大气状态的方法。

"简单来说,台风预报,如同其他的天气预报 一样,就像是在解一道非常复杂的数学题。"张

张玲介绍,数值预报方法是把大气和台风运 动,用一组大气运动方程组描述出来,预报人员把 观测到的气压、风、温度、湿度等作为方程组的一 些已知条件,而天气系统的变化(包括台风的运

程组本身是非常复杂的,在实际求解时还需适当 简化。用超级计算机算出结果之后,预报员再结 合自己的经验对数值预报结果进行订正,得出最 终的预报结论。

张玲告诉记者,预报员判断台风走向考虑最主要 的因素是大尺度天气系统对台风的引导作用,通 常称其为引导气流。

引导气流的大小、强度和方向是决定台风路 径最主要的因素。每个台风都不尽相同,都有自 己的特点,在实际预报中,台风引导气流通常是由 一些天气系统共同作用的结果,比如说西太平洋 副热带高压、南海季风、冷空气等,甚至有时南半

台风并非百害而无一利

是夏季常见的天气系统,因其强风暴雨的特点,破 坏力巨大,经常给沿海各地带来巨大灾害。目前, 我国将台风预警信号分为蓝色、黄色、橙色和红色

简单地说是君子要远离危险的地方,深入理解起 来,一是防患于未然,预先觉察潜在的危险并采取 防范措施;二是一旦发现自己处于危险境地,要及 时离开。气象工作者正是利用各种技术手段,尽

早发现、准确预报、及时提醒"危墙"信息,公众也 需要不断学习、掌握理解和正确响应这些信息,做 到防患于未然。

"虽然台风经常被当做一个破坏分子,但它 也并非百害而无一利。"欧波说,它携带的充沛 水汽和大范围、长时间的活动,不仅可以带来缓 解旱情的降水、消除长时间的晴热高温,风力发 电企业也可以充分利用它外围风圈范围和活动 轨迹,抓住有利时间窗口,增加风力发电作业、

气象与每个人的生活工作都密切相关,台风 台风路径预报是台风预报中很重要的一点。

相关链接

用太阳能从沙漠空气中收集水?

孟子曰:"君子不立于危墙之下"。欧波表示,

机框架材料,就算湿度极低,设备也能扩大规模 吸收更多水分,平均每公斤MOF材料可收集220

毫升水。 研究人员表示,测试使用的 MOF 材料 MOF-801由昂贵金属锆制成,所幸奥马尔现在已 经开发出由铝制成的新型 MOF 材料 MOF-303, 价格可便宜至少150倍,目前在实验室测试中捕获 到比 MOF-801 多两倍的水,相当于每公斤 MOF 材料可生产超过400毫升(3杯)水。研究人员计 划今年晚些时候到更干燥的地区测试这种铝基集 水设备。

一个人每天至少要喝一杯罐装可乐容量的 水,而MOF设备能在一小时内收集到这些水量。 科学家想证明,假如你不幸于沙漠中迷失方向,你 可以靠这种设备活下来,坚持至救援出现。在加 州大学伯克利分校公布的影片中,一名研究人员 真的喝下了这杯"水"。

新知

温暖浅水区 海床陡坡 鲸鲨选择这些聚集地

作为目前世 界上体型最大的 鱼类,鲸鲨在全球 已知的大型聚集 地仅有约20处。 鲸鲨为何选择在 这些地方聚集,是

长期困扰研究人员和生态保护者的一个问题。

英国约克大学等机构研究人员最近发表报告说,他们在 分析了17处鲸鲨聚集地后发现,这些聚集地有很多共同特征, 比如均在温暖的浅水区,同时靠近通往深水区的海床陡坡。

鲸鲨是一种滤食性鱼类。研究人员认为,这类聚集地为 鲸鲨提供了理想的觅食空间。海床陡坡促使海流上升,带来 一些浮游生物和小型甲壳类动物供鲸鲨进食。

此外,鲸鲨是一种变温动物,需要外界热量来维持体温。 它们可能会潜至1900米以下的深处觅食,那里水温较低,因 此它们需要就近选择一些地方休息和恢复体温,而温暖的浅 水区正好提供了这一场所。

不过,这些鲸鲨聚集地正在受到人类活动影响。这项研 究或能让人们意识到保护鲸鲨聚集地的重要性

(据新华社)

海上洄游时 北海狗 连续两周深睡眠

美国、俄罗斯 和瑞士研究人员 近日发表论文称, 他们发现生活在 北太平洋的北海 狗在海上洄游时, 能连续两周没有

快速眼动睡眠,其身体也不会出现明显不适。

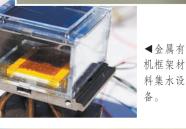
睡眠分为非快速眼动睡眠和快速眼动睡眠。非快速眼动 睡眠是基本不做梦的深度睡眠,而快速眼动睡眠是多梦的睡 眠。快速眼动睡眠是睡眠时大脑最活跃的阶段,对记忆和学 习很重要。

研究人员持续测量了4只北海狗的大脑、眼睛、肌肉和心 脏电波活动。结果发现,当北海狗在海上睡觉时,它们的快速 眼动睡眠时间很少或几乎没有。但它们在岸上睡觉时,则恢 复到非快速眼动睡眠和快速眼动睡眠交替的状态,且不用额 外补充被剥夺的快速眼动睡眠状态。

此前有研究表明,当动物在清醒或经历快速眼动睡眠时, 大脑温度会更高。研究人员认为,也许是因为当北海狗在海 上睡觉时,大脑的一部分还保持清醒,保持着一定的温度,因 此它们不需要通过快速眼动睡眠来调节大脑温度。

(据新华社)

猫头鹰红隼空中上演"拔河赛"


一只猫头鹰半路遭遇红隼夺食,用行动告诉了对方天下 没有免费的午餐。这只猫头鹰成功捕获了一只野鼠,正要飞 回巢,不曾想半路杀出一只红隼。饥饿的红隼想要夺取猫头 鹰的食物,与猫头鹰在半空上演了一场拔河比赛,最后,猫头 鹰成功护住了食物,将之带回巢喂养它的幼崽。

(本版图片来源于网络)

欢迎关注 共享科学之美 微信公众号 🔳

科学家已经喝过了 第二看台

美国研究人员近日开发并测试了一种"吸 水"设备,可仅利用太阳能,在沙漠里收集空气中 的水。

水在地球上含量最丰富,约占所有物质的 70%,但人类实际可饮用的淡水只占其中2.5%。 随着人口增长、气温上升,全球水危机也日益严 重,这促使科学家们开始研发更好的水资源收 集方式。多数研究集中在海水淡化技术,但也 有少数研究在钻研如何从干燥空气中"吸取"稀

美国加利福尼亚大学伯克利分校奥马尔·亚 吉研究团队在最新一期美国《科学进展》杂志上发 表论文介绍,他们前往亚利桑那州的沙漠中实测 了这种设备,并成功收集到了空气中的水。

据介绍,该设备使用了名为"金属有机框架"

(MOF)的固体多孔材料,这种由金属锆制成的材 料极易吸收液体和气体,且能在被加热后迅速将 它们释放。这款新型集水设备,将多孔MOF晶体 压缩在太阳能吸热器与冷凝板之间,其原理是当 空气流过 MOF时,水分子被 MOF束缚,接着等阳 光照射加热设备,水分子变成蒸汽,于箱子内部冷 疑成液态水并往下滴入收集器中。

实测中,设备里的"金属有机框架"在夜间吸 收了空气中的水,并在白天借助太阳能加热,将水 排放到特定容器中。去年,团队于学院大楼屋顶 进行测试,条件与莫哈维沙漠相似(平均湿度约 20%),12小时内从空气中吸取了2.8公升水,创下 令人惊讶的纪录。

这项技术不但不需要相对湿度高的条件,能 源效率也比其他现有技术好。这次,团队将测试 地点移往斯科茨代尔沙漠地区,进行了现场实 测。在那里,相对湿度从夜间的40%下滑至白天 的8%。而实测结果显示,只要添加更多金属有

(据新华社)