2016年12月27日 星期二

美开发出新型自愈材料

可研制人造肌肉 改进电池和机器人性能

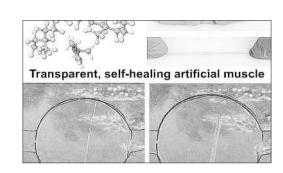
控领域中生物传感器性能等,应用潜力广泛。

科技日报北京12月26日电 (记者张梦然)据美国每日太空网25 日消息称,美国国家航空航天局 (NASA)正在佛罗里达的肯尼迪航 天中心加紧为"猎户座"(Orion)飞船

的乘员舱模块做测试,并将于2017 年完成该航天器一系列里程碑式的

NASA与"猎户座"的主要承包 商洛克希德·马丁公司的工程师,目 前已经深入到飞船的关键系统部分, 如航空电子组件和推进器。在2017 年年初,"猎户座"的乘员舱将与 NASA太空发射系统中的计算机首 次相连。随后,其防热罩将被固定在 机组模块上并进行一系列测试,以确 保其能经受住发射中的动力学"打 压"及深空飞行的恶劣环境。另一个 重要环节是乘员舱的装配焊接,飞船 整体也将面临一系列的机械分离、声 学和压力测试。

2016年,该团队一直致力于对 飞船进行各项严苛"考验",包括通过 压力试验检验焊缝是否能承受太空 中的压力,再通过相控阵和 X 射线保 证焊缝结构完整。这些测试主要目 的是确保整体结构的安全性。该团 队预计于2018年2月或3月完成"猎 户座"的制造工作。


在最终装配完成后,"猎户座" 将于2018年10月或11月执行飞往 月球背面的无人飞行测试——"探 索任务-1(EM-1)",即搭载太空 发射系统进行首次无人飞行测 试。这次试飞将在肯尼迪航天中 心发射,"猎户座"飞船离开地球轨 道后飞向月球,绕月飞行6天再返 回地球,着陆点可能定在太平洋附

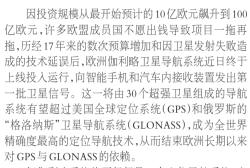
近,由三个降落伞确保安全着陆。整个飞行测试时 间为三个星期,所得的各项数据将为紧随其后的载 人登陆火星等计划做准备。

版的《先进材料》杂志在一篇论文中,介绍了加州大学一一"。自愈材料能自动修复使用造成的损耗、延长使用 克里斯托弗·开普林格之前研制的离子导体,能为人造 河滨分校科学家汪超(音译)与同行联合开发的一种拥 寿命并降低成本;而能让离子在其内流动的离子导体, 肌肉供能并用其制成透明扬声器,但出现机械故障后 有自愈能力的透明、高延展性导离子材料。这种材料 在能源储存、太阳能转换、传感器和电子设备中扮演着 可赋予机器人发生机械故障后的自愈能力、延长电动 重要角色。汪超表示:"研发集多种优越性能于一身的 含的共价键在电化学环境下会发生反应,降低材料的 汽车及锂离子电池使用寿命,以及改善医学和环境监 材料是科学界多年未解的难题,现在我们成功做到并 性能。汪超利用离子偶极作用,让带电离子与极性分 已着手开发其相关应用。"

论文联合作者、科罗拉多大学博尔德分校副教授 研制出集多种优越性能于一身的新型自愈材料。 不能自我治愈。不能自愈的原因在于,这些聚合物内 子之间耦合,从而大大提高了离子导体的稳定性,最终 种人造肌肉由三层材料堆积而成,上下两层是能导电和 刺激就能恢复到与切断前相同的性能水平。

这种橡胶类柔软材料成本低、易生产,能延展到初 始长度的50倍。当剪断后,在室温下24小时内即能重 新连接起来(自愈),且自愈后仅5分钟就能再次延展两

图片来源:加州大学河滨分校


自愈的新材料,中间层是透明的非导电橡胶类薄膜。他 们施加电信号发现,人造肌肉能像人类二头肌一样开始 汪超团队还利用新材料开发出新型人造肌肉。这 活动;更重要的是,当其断裂成两段后,不依靠任何外来

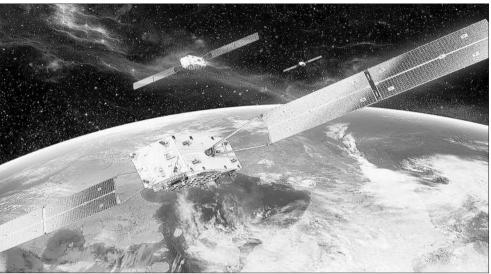
■今日视点

GUO JI XIN WEN

花 100 亿 挣 900 亿,值!

欧洲伽利略卫星导航系统历经17年终运行

但伽利略系统绝不仅仅是一个定位导航系统,它 更是一个意义重大的科学工具,该系统将大幅提升科 学家们对大气和地球科学的研究能力。


定位精确度达一米以内

由于其卫星数量更多且安装了最精确原子钟,运 行300万年后误差也只有一秒,伽利略导航能提供更 好的信号、传递更多信息,其免费定位精确度可达到 一米以内,付费服务精确度更高,达到厘米以内,而 GPS和 GLONASS 只能达到几米。

信号会时断时续,需要依靠GPS卫星的帮助,但等 2020年前完成另外12颗卫星的发射,共30颗卫星盘 旋在地球上空23333公里高度,其信号传导会更加可顺利到达。 靠,届时将提供前所未有的精准时间和位置数据。

未来20年市值900亿欧元

伽利略卫星导航系统官网表示:"等30颗卫星全 部就位,其搜救服务能大大缩减人员搜救时间,比级就能使用。

欧洲伽利略卫星导航系统模拟图。

伽利略系统目前有18颗卫星在轨运行,开始阶段 如,落入海底或山间迷路人员的搜救,将从之前的3 小时缩短到10分钟。"无论是隧道内,还是被高楼大

> 负责开发这一技术的欧盟委员会和欧洲空间局 表示,一些手机生产商已着手制造相关芯片,今后只 要装载兼容伽利略导航系统的芯片,智能手机和导航 盒都可免费使用导航服务,有些甚至只需通过软件升

图片来源:欧洲空间局官网

现在,华为Mate9和西班牙的一种手机已经装备 了兼容伽利略导航系统的芯片。高通、博通、英特尔、 联发等科技巨头们正在生产兼容伽利略导航系统的 十几种芯片。这些产业合作将为伽利略导航注入大 量资金和创新元素,帮助开发出全新运用和服务。

据估计,伽利略导航系统将为欧盟 GDP 贡献 10 个百分点,这一比例到2030年会增加到30%。欧盟委 员会表示,伽利略卫星导航系统将在未来20年创造 900亿欧元的市值,多年投资将获得回报。

开创地球科学新时代

加拿大纽布伦斯威克大学卫星导航系统专家理 查德·朗格里认为,伽利略导航的另一大价值是增强 了科学家们对大气和地球科学的研究能力。到2020 年,其30颗卫星部署成功,再加中国北斗系统的35颗 卫星,以及现有美俄导航卫星、日本和印度计划中的 导航卫星,全球绕地导航卫星数将增加到130颗,大气 层内将流动着更多类型的无线波信号,频率范围分布 更广,有助于建立更加精准的地球系统模型。

借助丰富的无线电信号,研究人员能提取地球大 气中导航卫星信号,测量出大气温度、压力、密度及水 蒸气含量,提高天气预报和气候研究的准确性。

导航卫星信号还可用来测量大气上层电离层的 电子密度,跟踪预报耀斑和日冕物质抛射等太空灾 害,并提前预警海啸和地震等重大灾难。这些灾害事 件会严重干扰大气,向电离层发射声波和引力波,引 起上层大气电子密度发生改变,因此能更好评估海啸

德国地球科学研究中心科学家延斯·魏克德表示, 多个导航系统结合使用,还能大大改善对海洋风速、海 面潮水的强度和高度等的测量。现有对海洋的远距离 观测主要基于飞机或飞船接收到的雷达信号,以及其 他卫星搭载的仪器发回的数据,这些测量的空间分辨 率最高只有大约每10天80公里,而导航卫星信号有望 大大改善海洋观测结果。魏克德正在开展的研究项 目,计划2019年搭载能接收导航卫星信号的芯片装置 飞到国际空间站,将海洋监测的空间分辨率提高到每4 天几公里。 (科技日报北京12月26日电)

美5万人基因组研究发现 250人中或有1人携心脏病变异基因

变异基因。

欧洲和美国的几个项目积累了大量人群的DNA 们同意分享电子病历用于研究。 (脱氧核糖核酸),将这些数据与临床信息相结合,可发 现基因突变与疾病之间的联系。

为了找到罕见的疾病变异体并将患者 DNA 结果 关调查结果,以便根据需要调整保健措施。

科技日报北京12月26日电(记者房琳琳)《科整合到保健档案中,美国宾夕法尼亚州丹维尔的盖辛心血管疾病遗传学家丹尼尔·诺登说,筛选人群中案增添了喜庆氛围。对美国人来说,一年中最重要的节逐步打入美国市场,让消费者享受到了负担得起的新技 学》杂志官网日前报道了一项研究成果,将5万人 格保健系统与纽约的一家生物制药公司,共同对50726 的胆固醇升高变异很有意义。但研究具有局限性, 日还真少不了中国"元素"。 基因组数据与电子健康记录结合后发现,每250个 名宾州患者进行了外显子组(遗传代码中蛋白质编码 毕竟5万个样本对于罕见基因变异来说,基数仍然 人中就有1人可能携带导致心脏病发作或中风的 的组分,占整个基因组的1%)测序。患者平均年龄为 较小。 61岁,大多数人来自宾州乡村,98%的人有欧洲血统,他

研究人员进一步深入研究了已知的导致异常高胆 固醇水平的3种基因的临床影响。高胆固醇水平容易 诱发心脏病和中风。正如预期的那样,具有这些家族 性高胆固醇基因变异的229人,比一般人患冠状动脉疾

若在进一步的研究中寻找导致新疾病的基因变 体,需要采取诸如奥巴马总统倡导的招募100万志愿者 柜台摆满了各种来自中国的装饰品,从人造花环、串灯 便利。 此次参与者中的3.5%具有明显的与疾病相关的76 的精准医学研究计划,或从退伍军人事务部召集百万 种基因突变,比此前预期的2%要多。这些人被告知相 退伍军人的大规模采样方法,这样的项目将有助于弄 清基因突变在引发少数民族罕见疾病中的作用。

"中国元素"助益美国圣诞购物季

这些研究迄今为止寻找到的是共同遗传标记, 加哥郊区的安迪不久前专为圣诞节购置了一套中国产 造的电视机以及标价499.99美元的航拍无人机。 非对疾病产生更大风险的罕见变异。田纳西州 的激光外景灯,晚上灯光打到外墙上姹紫嫣红的动态图

激光灯物美价廉,已成为圣诞购物季热销产品。

据新华社芝加哥 12月 25 日电 (记者王强)家住芝 到礼品袜。在消费电子产品柜台,也摆放着多款中国制

安迪告诉记者,中国制造的中高端家用电器 术福利。他掏出手机展示了可遥控温控器的APP。通 据安迪介绍,这种在美国电视购物频道大力推销的 过手机与家中无线网络连接,可以在办公室控制家中的 电暖气温度,操作简单便捷。先进的"物联网+高性价 在美国大型连锁商场塔吉特,人口附近专设的圣诞 比"的中国制造,给美国民众的生活带来了实实在在的

■创新连线·俄罗斯

新型银催化剂或成防霾神器

国立大学的科学家们正在研制一种能将有害颗 粉状或颗粒催化剂与很多同类产品的区别是,常温下 粒分解成无毒物质的新型银催化剂,以过滤净化 具有很好的活性和稳定性。'

据《西伯利亚科研新闻》杂志报道,托姆斯克 学催化研究实验室高级研究员马蒙托夫指出:"新型

除能分解有害空气颗粒外,这种催化剂还可防治 这种催化剂用氧化硅制成直径6到10纳米的纳 工业有毒气体排放、抵御森林火灾引发的雾霾,并能 米管,管内是银和氧化铈合成产物。托姆斯克国立大 治理化工厂的气体排放,以及净化汽车尾气。

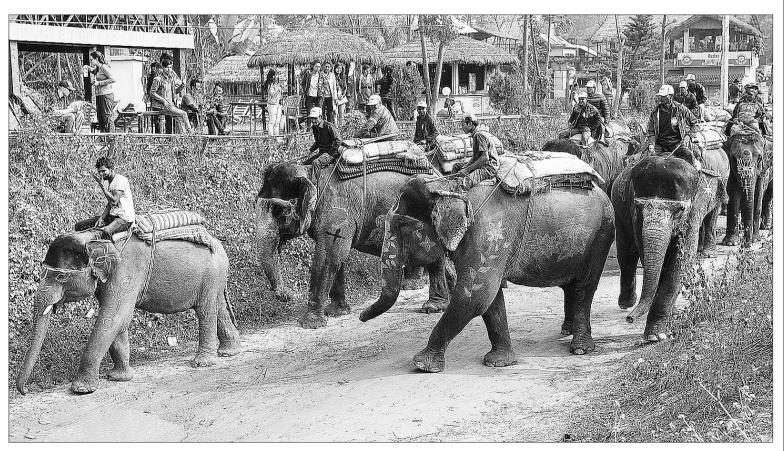
首个快速预测地震模型问世

俄罗斯远东联邦大学新闻中心表示,该校专家研

发出世界首个地震短期预测模型。

可能,可在核电站等潜在危险设施选址过程中对考虑 记偏移现象进行跟踪观察。该预测模型不是以地震的 地震因素提供帮助。其内的软硬件系统适用于高山 间接征兆为基础,而是基于对可致地震的地球物理现 峻岭附近的岛屿。

研究人员表示,新模型利用基准(气象)站和地震 传感仪测量标高和水平位移。这种基准站按一定顺序 这项世上独一无二的技术让快速预测地震成为 大面积分布在岛屿或陆地,对预示地震来临的监控标 象相关数据的研究,可在全世界范围内投入使用。


俄为中国学者研制宇宙尘仪器

俄罗斯萨马拉大学新闻处发布消息称,该校航天 大兴趣。 仪器制造研究所为中国学者研制出三种仪器,以研究 宇宙尘和微陨石对航天器的影响。

"鹳"航天器研究宇宙尘的轨道实验的延续。萨 方的要求进行改装。 马拉大学于今年4月底送入近地轨道的"鹳-2D"

中国正在积极发展小型卫星制造技术,北京卫星 环境工程研究所和中国空间技术研究院的学者前往 据称,该项目是借助俄罗斯第一代和第二代 该校讨论了相关技术合作。这些俄产设备将根据中

(本栏目稿件来源:"卫星"新闻通讯社 整编:本 (AIST-2D)卫星上安装的仪器等引起了中方的极 报记者聂翠蓉)

尼泊尔大象节

这是12月26日在尼泊尔奇特旺拍摄的大象节活动现场。大象节旨在推动当地旅游业,并提高人们保护大象的意识。

新华社发(苏尼尔·夏尔马摄)