2016年9月28日 星期三

新型忆阻器可逼真模拟突触行为

或为研制类脑计算机铺平道路

科技日报北京9月27日电(记者刘霞)据美国趣 突触内钙离子的行为,逼真度有史以来最高。研究人 与真正的生物系统相似性很低,因此效率不高,且耗能 员表示,新设备有助于开发类脑(神经形态)计算机。 更多,逼真度也不够。" 这种计算机在执行感知和学习任务方面比传统计算机 表现更好,也更节能。

> 科技日报北京9月27日电(记 者**张梦然)**英国《自然·通讯》杂志27 日发表的一项最新医学成果显示,在 三只羊羔体内,替代肺动脉的生物 工程血管能够在受体中生长。美国 科学家的这项研究如能在人体中同 样得到验证,那么这种新型血管移 植物将使年轻患者不再需要反复接

> 一直以来,生物工程合成血管 的发展并未达到完善的地步,其面 临的最大挑战之一,是人工设计的 血管要能够在移植后改变自己的 下,随新的受体共同生长。科学家 们一直致力于开发新方法来合成 这种血管,但需要使用病人自己的 细胞小心翼翼地制备,过程漫长, 而且移植前需在实验室中培养。 实际上,目前还没有一种理想的血 管可以代替自主血管,因此医学界 仍在艰难地研究与探索。

> 此次,明尼苏达大学研究人员 罗伯特·特兰奎洛及其同事研制 出适合存储并在需要时进行移植 的血管,且不必在实验室中培养 个体定制的血管。他们制作这种 人工血管的方法是:将绵羊皮肤 细胞放入特制管道中,并且有规 律地推送细胞生长所需的营养 素。这样可以帮助细胞将蛋白质 存储在其周围,使血管产生适当 的机械性能。最终将绵羊细胞冲 刷干净,只留下不会引起免疫反

应的"非细胞"蛋白支架。

事实上,当这些新制成的非细胞血管移植物替代三 只羊羔的部分肺动脉时,羊羔自身细胞迅速填满移植的 血管,使血管变形并随受体共同生长直到成年。研究人 员未观察到不良反应,如凝血、血管变窄或钙化。

这项概念验证研究的结果鼓舞人心,但是在确定该 方法有效并且可以安全地进行人体测试之前,还需要开 展进一步研究,包括更大规模的动物研究。

味科学网站 26 日报道,美国科学家研制出了一种新型 和计算机工程教授杨志卿(音译)称:"过去,人们用晶 设备能采用一种更自然、更直接、更逼真的方式模拟突 "扩散式忆阻器",模拟了人脑两个神经元的结点——体管和电容器来模拟突触行为,这些设备虽能工作,但触,不仅模拟一个突触功能,也囊括了其他重要属性。"

亿个突触,科学家们一直希望能研制出类脑计算机来 传递给下一个神经元。

在生物系统中,当一个神经脉冲到达突触时,会使 通道打开,钙离子流进突触,触发大脑释放"神经传递 研究表明,人脑约有1000亿个神经元、约1000万 素",这些物质会穿过两个神经元之间的沟壑,将脉冲

薄膜(位于两个电极之间)内的银纳米粒子簇组成。薄 膜是绝缘体,但当施加电脉冲时,热和电共同作用,使 扩散,非常适合存储用途)结合,展示了神经元的一种 粒子簇分崩离析,纳米粒子散开通过薄膜并最终形成 长期可塑性——"尖峰时刻相关可塑性(STDP)"。以 一根导电丝,让电流从一个电极到达另一个电极。一 前也曾有人用漂移忆阻器模拟钙离子的行为,但其物 旦电压移走,温度下降,纳米粒子又重新聚合成簇。研 理过程与生物突触迥然不同,限制了模拟突触功能的 究人员称,因为这一过程类似于生物突触内钙离子的 逼真度和多样性。

他们也将新忆阻器同漂移忆阻器(依靠电场而非

■今日视点

GUO JI XIN WEN

"我才17岁,还想更好地看看世界"

——美国放宽基因疗法临床试验年龄限制

本报记者 聂翠蓉 综合外电

上周,家住佛罗里达州的17岁的盖瑞·洛特幸运 地被一项基因疗法选中参加临床试验。洛特在6个月 前被发现患上了一种罕见的退行性眼病,这种病发展 很快,会导致他终生失明。

基因疗法成"最后治愈机会"

洛特的病情让他没有时间再等待了。去年12月, 他的视力第一次出现下降,今年1月就恶化到不能打棒 球,到2月份甚至不能开车了。到医院检查后,他被诊 断为莱伯遗传视神经疾病(LHON)。这种疾病非常罕 见,全世界每5万人中才会有一例患病。负责这次试验 的埃默里大学医学院眼科教授南希·纽曼表示,这种眼 病目前并没有有效的治疗方法,这就是患者不怕风险 仍期望被选中参与基因疗法临床试验的原因。

由基因视力生物公司(GenSight Biologics)开发的 这一疗法,能够对引起洛特视力减退的特定基因变异 进行精准修正,这给他恢复视力带来了最大希望。洛 特的妈妈珍妮弗一直在追踪试验的相关进展,当获悉 试验参与人员的最小年龄必须18岁时,珍妮弗不断给 公司打电话和发电子邮件,请求公司微调这个年龄条 件,因为洛特的年龄已经非常接近。洛特的朋友们也 向美国食品和药物管理局(FDA)发出请愿书,请求 FDA降低年龄限制,给洛特一个机会。

FDA规定,由于有些基因疗法会对未成年人没有 发育完善的器官造成伤害,某种药物在招募青少年参 与临床试验前,必须在成人患者中检验其安全性。但 在洛特家人和朋友的努力下,FDA本月特别批准基因 视力生物公司将参与人员的年龄设置为15岁到18 但现在,随着几个小型临床试验获得振奋人心的治疗

岁。这个特批也有科学依据,因为不管15岁还是20 岁,莱伯遗传视神经疾病具有相同的生物学特性。

基因疗法临床试验条件严格

过向引起疾病的变异位点引入新基因来治疗疾病。 1999年,一位18岁的病人在参加一个基因疗法临床试 验中不幸去世,基因疗法在美国的发展曾停滞数年。

效果,基因疗法再次复兴,为血友病、免疫功能失调和 退行性眼病等患者带来了希望。尽管风险依然存在, 一些患者仍期盼能幸运地被选中参加临床试验,对于 他们来说,不参加病情会继续恶化,参加才有可能重

满足洛特这样病情紧急的患者。患者必须符合制药企业 设计试验时设置的各种标准,包括参加人员的年龄和患 病周期限制,不能满足条件的人就会被排除在外。

性,研究人员往往会选择那些发病时间较长的病例, 将药物出错造成的风险降到最低。一旦进入三期临 床试验,那些出现症状时间较短的病人才有机会参 加,以便更好地检验药物有效性。但这种设计往往会 缩小参与试验人员的范围。

洛特特别幸运,基因视力生物公司的两期临床试 验都只招募最近一年出现症状的病人,而洛特发病才 几个月,完全符合要求。许多和他得同一种病的患者

为病患与临床建立顺畅渠道

为了帮助病人参与基因疗法试验,美国一些组织 开始帮助那些绝望的患者与基因疗法研究团队建立

巴尔的摩的一家基金会提供了一个登记平台,病人 可以上载他们的基因信息,一旦发现信息符合某些临床 试验的要求,平台就会通知这些病人到试验组报到。基 因试验小组也需要这种平台,他们的基因药物需要的基 因变异特性,有可能只存在于数十个病人中。华盛顿一 家退行性疾病联盟组织也在今年4月成立了专门委员 会,指导病人如何参加基因疗法的临床试验。

随着基因疗法从概念走向实用,越来越多的病人 从中受益,参与试验的需求也会越来越大。尽管相关 疗法能否治好疾病,或是会带来副作用不得而知,但洛 特似乎从不担心:"我别无选择,这是改善我病情的唯 一机会。我只有17岁,还想更好地看看这个世界。"

(科技日报北京9月27日电)

美重构过去200万年地球表面气候 预估未来气温将上升3—7摄氏度

科技日报北京9月27日电(记者张梦然)英国《自 到7摄氏度。 然》杂志26日发表的一篇论文称,美国科学家重构了过

人们对于地球气候系统动力学和敏感度的认识,极 去200万年的全球平均表面温度,这是迄今为止时间跨 大地依赖于对过去气候的重构。但是,之前的全球平均 度最长的地球表面气候重构研究。文章认为,目前的大 表面温度重构仅针对孤立的时间窗口,譬如过去20000 气层温室气体水平可能使未来地球温度上升3摄氏度 年的时间,而跨越冰期的不间断重构一直没有过。

此次,美国斯坦福大学研究人员卡罗林·希尼使用 源自59个海洋沉积岩心的逾20000个海洋表面温度数 据结果,以1000年为间隔,重构了过去200万年的全球 平均表面温度。研究人员发现,地球表面温度一开始逐 渐下降,到大约120万年前这种降温趋势停滞,表明全 球变冷并非导致进入中更新世过渡期(125万年前到70 万年前)的唯一原因,当时地球气候正从4.1万年左右的 冰河周期,向10万年左右的周期转变。

研究人员认为,结合大气层二氧化碳的记录,此次 重构预估未来全球平均表面温度将上升3摄氏度到7摄 氏度,这是在大气层二氧化碳浓度稳定在目前水平情况 下得出的结论。

继承传统的匠人精神

望月和人是雏人形第三代传人,从事手工制作雏人形已有30个年头。雏人形是日本家庭在女孩出嫁之前每年三月三日必摆放的传统装饰,寓意以后嫁 个好人家。雏人形的制作非常复杂,特别是雏人形的手臂需要制作人用力来弯曲,很多手工艺制作者患上了肩、腰疼的毛病。正是由于匠人们几十年如一日 的认真工作,才得以传承了日本的传统习俗。在科技高度发达的今天,像这种作坊在日本还有很多,产品从雏人形到航天飞机的隔热板,在社会辉煌的光影 之下默默地守护着传统。 本报驻日本记者 陈超摄

中英植物和微生物科学研究中心揭牌

纳斯中心和中国科学院共建植物和微生物科学联合研 科研成果。该跨国研究团队将重点增加农作物产量, 究中心(CEPAMS)在上海正式挂牌。

牌仪式时表示,加强国际合作是解决世界性难题、共同 助。该机构研究人员最近取得重大突破,发现中药黄 面对挑战的重要手段。新成立的研究中心是英国与中一芩中含有抗癌成分。 国建立科学合作伙伴关系的见证,将把中英双方顶尖科 学家的智慧用于提高作物产量,以应对日益增长的世界 越来越多,这个中心是其中最新增加的一个机构。英 人口,同时尽可能在农业生产中降低除草剂的使用。

传与发育生物学研究所和植物生理生态研究所)的合 研究理事会均已开设虚拟联合中心,支持中英两国的 作项目,将中英两国先进的实验室组合在一起,共同应 研究合作。

科技日报讯(记者华凌)9月24日,英国约翰·英 对食品安全和可持续医疗保健全球性挑战,培育优秀 生产植物和微生物高附加值产品。新中心的成立得到 英国大学、科研与创新国务大臣乔·约翰逊主持揭 中科院和英国生物技术与生物科学研究理事会的资

据了解,中英两国共同投资建立的研究设施数量 国生物技术与生物科学研究理事会、自然环境研究理 据介绍,这个中心是英方与中科院两个研究所(遗事会、经济与社会科学研究理事会和艺术与人文科学

俄青年才俊竞逐"荣耀杯"通信知识竞赛

届华为"荣耀杯"全俄通信知识竞赛决赛日前在莫斯科 出优胜者。比赛全程进行网络直播,设有观众互动环节。 "数字十月"中心举行。中国驻俄罗斯大使李辉、俄国

家杜马官员和华为公司代表出席竞赛开幕式。 的2300名大学生和青年专家,通过线上模式参加了通信 与世界信息通信前沿研究的前景。 知识竞赛初赛,最终43名选手完成了全部初赛任务,获得 决赛资格。决赛包括高速移动通信网络、云服务与云存储 年一届,旨在促进俄信息通信技术青年人才教育和职

科技日报莫斯科9月26日电(记者亓科伟)第二 实践能力,每个分项的前5名参加现场知识问答并最终决

比赛进行的同时,现场邀请了150名教师和大学生 参加公开课,共同讨论5G网研发、虚拟化网元、物联网 今年7月至8月,来自俄罗斯168个城市250所高校 等信息通信领域热点问题,以及俄高校和科研小组参

华为"荣耀杯"全俄通信知识竞赛2015年创办,每 和IP协议技术三项分赛,主要考查参赛者的理论知识和 业发展,加强中俄在该领域的合作和人才交流。

优化城市规划布局有助提升居民健康

据新华社伦敦9月26日电 (记者张家伟)英国医

这个有关城市规划、交通和健康的系列研究由澳步行和行车安全等。 大利亚墨尔本大学和美国加利福尼亚大学圣迭戈分校 市人口预计将分别上涨33%、38%以及96%。

研究团队认为,城市规划需要鼓励更多人步行、骑 学刊物《柳叶刀》近日发表一个专题系列报告说,国际 车以及使用公共交通,同时减少私人车辆的使用。这 大城市如果能优化城区总体规划以及交通布局,将有 种规划应包括将商店和各类服务设施与居民区的间隔 助降低空气污染并鼓励居民更多步行和骑车,最终帮 控制在步行距离内、更合理地分布办公区和居住区、减 少停车位并提高停车费用、改善交通基础设施以保证

基于上述原则以及更合理的土地利用等因素,研 学者领衔的团队完成。据介绍,全球超过一半的人口 究团队设计了一个"紧凑型城市模型",并将这个模型 居住在城市中,在未来数年里城市化进程还会不断加 应用到墨尔本、伦敦、波士顿、圣保罗、哥本哈根以及德 快。研究预测,到2050年,美国、中国以及印度的大城 里这六个大城市。分析结果显示,这六个城市经过相 关的城市规划优化后,能够提升居民健康水平。