种放日報

GUO JI XIN WEN

《巴黎协定》有望今年底生效

签署国超55个 欧盟和英国尚未加入

国数目达到了60个,满足了协议生效的条件之一。

去年底,联合国31个成员国签署了《巴黎协定》,共

科技日报首尔9月25日电

(记者邰举)韩国研究团队日前阐 明了大脑调节食欲的生物学机理, 开辟了解决肥胖等健康问题的新

此前研究发现,大脑下丘脑是 食欲调节的关键区域,能够根据血 液中糖类和某些激素的浓度水平 调节食欲,影响食物摄入,但始终 不了解具体的调节机制。

韩国大邱庆北科学技术院 (DGIST)一个研究团队发现,一种 调节糖类、脂肪和蛋白质代谢的磷 酸腺苷活化蛋白激酶(AMPK)在 调节机制中起着支配作用。 AMPK能改变大脑神经肽分子的 属性,从而对食欲进行调节。

研究证实,AMPK通过一种类 似自噬作用的机制实现这样的调 节。若血液中糖类浓度低下, AMPK的活性将增加,从而加强自 噬作用。自噬作用能回收细胞器 的一些组成成分,其中包括影响到 食欲的神经肽Y(NPY)和神经激 素阿黑皮素原 α (POMC),最终 降低了 NPY 和 POMC 的表达水 平,使得食欲上升,增加食物的摄 入以及增加体重。

相反,当AMPK表达被抑制, 最终食欲表现为下降。

科研人员通过大量的体外 实验特别是动物实验最终获得 了这一发现。研究的最大挑战 在于分辨体内激素、酶以及细胞 信号构成的复杂信号通路,找到 大脑活动与身体状态相关的信 息传导机制。

食欲调节机理具有重要的医 学价值和现实意义。人类诞生以来的生存环境发生了 很大变化,但是总体食欲水平仍然处于诞生初期的较高 水平。人类需要对食欲进行调整,以解决全球范围内普 遍存在的超重和肥胖问题。

自噬作用是一种溶酶体对细胞自身结构的破坏和 吞噬现象,普遍存在于真核细胞内。自噬作用能够清除 降解细胞内受损伤和衰老的细胞器,以及不再需要的大 分子等结构。

第一个多国参与的全面气候协议——《巴黎协定》有望 变化。《巴黎协定》生效需要有两个条件,一是需要至少 的12%,加入与否备受关注;以英国为代表的其他国家 果无疑增强了人们敦促协定早日生效的呼声。 今年底生效。据《新科学家》网站报道,墨西哥、泰国、55个国家签署协议,二是这55个国家的温室气体排放 都表示,要在年底前签署协议。如果欧盟和英国尽快 阿联酋和摩洛哥4个国家日前也签署了这一协定,签署 总量占全球总排放量的55%。现在,国家数达标了,但 签署协定,将有助于满足协定生效的第二个条件。 签署国的排放总量稍低,只有48%。

科技日报北京9月25日电(记者**房琳琳)**世界上。同约定减少温室气体排放,以防全球气候发生危害性。该协议。欧盟因其温室气体排放量占到全球排放总量。年到现在,气候变暖的趋势有增无减,这些科学研究成

世界最大温室气体排放国中国和美国已经签署了 国科学家发表文章称,高温纪录再次被打破,且从1880 面临的危机都存在同样的紧迫感。"

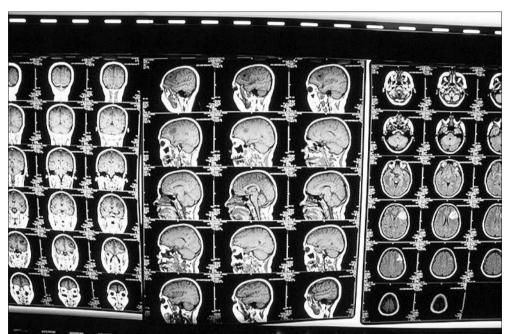
生效要花几年甚至几十年,巴黎气候大会刚刚过去9个

《巴黎协定》最初生效日期设定在2020年,原则是 联合国秘书长潘基文表示:"有时一项联合国条约 满足两个条件后30天自动生效。今年11月7日,在摩 洛哥首府马拉喀什还将召开新一轮气候谈判,届时新 气候变化带来的危害日益加剧。就在几天前,美 月,《巴黎协定》生效的势头如此显著,证明我们对共同 的签署国加入若能达成第二个条件,《巴黎协定》或许 会于2016年底提前生效。

■今日视点

大脑研究也要整"大科学"

-"国际大脑计划"适逢其时但喜忧参半


据英国《自然》杂志9月21日报道,这一脑科学大 项目的细节,包括哪个美国机构启动这一项目以及谁 来买单等,目前都悬而未决。但美国国家科学基金会 (NSF)在洛克菲勒大学主办了一场有关这一项目的研 讨会。与会人士的反应喜忧参半:有人认为该项目会 促进人类脑科学研究的发展;但也有人担心,如何对 现有脑科学项目进行协调是个问题;另外,这一大项 目可能产生"虹吸效应",从现有脑科学项目中"搜刮"

开展国际脑科学研究适逢其时

最近几年,多个大型而长期的脑研究项目问世, 包括投资60亿美元的"美国脑计划(US BRAIN Initiative)"、欧盟投资10亿欧元的"人类大脑计划 (HBP)"。中国和日本也都在今年年初发布了重大的 脑科学项目,希望能通过研究猴子来理解人脑。

据英国《新科学家》杂志9月19日报道,在当天 召开的"协调全球大脑计划(C GBP)"会议上,很多 科学家表示,神经科学的时代已经到来,现在是进 行脑科学大科学研究的好时机,就像天文学、物理 学和遗传学等领域的其他国际合作计划一样。"国

洛克菲勒大学的神经生物学家科妮莉亚·巴格曼 是美国国立卫生研究院(NIH)"美国脑计划"工作组 的组长,她说:"我曾经认为,在我科学生涯中最令人 得更好。"

强化团队合作的重点在共享

据英国《自然》杂志报道,该国际性大脑计划的目 标之一是,研制出通用的大脑绘图工具。目前,有些 实验室已经研发出了一些有潜力的实验性工具,但一 般只在本机构内部使用以及进行简单修改;另外,每 个实验室的实验方法也不尽相同。这使得不同团队 很难合作或者交换信息。加州理工学院物理学家迈 兴奋的时刻是总统2013年宣布'脑计划',但现在我觉 克尔·若克斯表示:"我们仍处于神经科学的工艺时 代,每个人都拥有自己独特的秘密武器。"

科学家们提出的另一个想法是创建"国际大脑天 文台(International Brain Observatory)"。这一"天文 台"拥有一些功能强大的研究工具,比如显微镜和超 级计算资源等,供全球科学家使用。

尽管在现有情况下,整合各国数据很困难,因为 每个神经科学实验室收集、组织和分析数据库的方法 并不一样。但约翰霍普金斯大学的神经科学家约书 亚·福格尔斯泰因提出了一个虚拟的"国际大脑站", 能自动将扫描人脑获得的数据或基因表达数据转变 成标准格式,使人们能更好地分析这些数据。这个虚

拟的基于云的数据分享资源(类似于基因银行)的想

协调各国脑科学项目是难点

尽管科学家们对新的国际脑科学大项目充满信心, 但也有人担心,很难对不同国家的研究项目和资源进行 协调。他们认为,各国现在进行的脑研究项目有不同的 选择和偏重。例如,中国和日本主要进行灵长类动物研 究;美国和另外几个西方国家则因为伦理原因,希望尽量 避免研究灵长类动物,这些地方的科学家一般通过研究 苍蝇、蠕虫、老鼠和鱼来代替。另外,欧盟旗舰项目"人类 大脑计划"专注于理解大脑如何工作;而加拿大大脑研究 的主要兴趣则在研发出能应用于医学领域的技术。

也有科学家担心,对新项目的支持可能会使现有 项目受到冷落。例如,加拿大已经进行9年的CBRAIN 计划是一个数据和方法的交换所,现在已被22个国家 和参与HBP的科学家所使用。但加拿大麦吉尔大学神 经病学家阿兰·伊文思指出,这一项目与国际大脑站类 似,我们不需要再做无用功。

其他人则担心,新的全球计划可能将发展中国家 排除在外。印度塔塔基础研究所的桑迪亚·库萨卡 说:"如果参与这个国际项目的唯一方法是投入3亿美 元,那它就不算是一个国际性的项目。"

库萨卡解释说,尽管有些小国无法负担绘制绒(美 洲产小型长尾猴)脑图谱的成本,但他们能贡献病人、 模式生物等,让科学家们设计出成本更低廉的技术。

从整体上说,科学家们希望,新的全球计划能使 他们将大脑研究带到新层次。因为全球各地的几个 大脑项目已经进行了一段时间,科学家们更容易比较 它们各自的优缺点,然后再确定如何对其进行协调。 HBP常务董事克里斯托弗·艾贝尔说:"我认为,这是 一个开展国际性脑科学研究的好时机。"

扎克伯格拟投30亿美元资助医学研究

软、谷歌等相继宣布了各自在医疗健康领域的大项目, 点。此次宣布的30亿美元资金将覆盖这一宏伟目标的 "脸谱"(Facebook)也不甘示弱。"脸谱"首席执行官马 第一个十年。 克·扎克伯格携夫人日前举行新闻发布会宣布,将在未 来10年内投入30亿美元资助医学研究,希望能在2100 名为"生物中心"的研究中心。该中心投资6亿美元,将 年前"治愈、预防或控制所有疾病"。

学顾问委员会负责人是美国"脑计划"工作组组长、洛克 埃博拉、寨卡等疾病和病毒研制新的测试方法和疫苗。 菲勒大学神经生物学家科妮莉亚·巴格曼,成员包括很 寿命将超过100岁。他们希望通过不同学科领域的专题,而且尽量做到知识共享。

科技日报北京9月25日电(记者刘霞)IBM、微 家通力协作,研发必需的新工具和新技术来做到这一

扎克伯格夫人补充说,他们已在旧金山创办了一家 与斯坦福大学、加州大学旧金山分校及伯克利分校开展 据英国《自然》杂志官网21日报道,扎克伯格夫妇 为期10年的合作。"生物中心"将专注于两个项目:一是 去年12月创办了"陈一扎克伯格计划",致力于教育、健 "细胞地图集",这幅地图将对控制身体主要器官的不同 康研究以及互联网连接等领域的发展。该基金会的科 类型细胞进行描述;二是"传染病计划",将针对艾滋病、

巴格曼希望,集结多学科领域专家的知识和智慧, 多生物界的大咖。扎克伯格估计,到2100年,人类平均 来解决诸如缺乏能广泛用于多领域的可升级工具等问

首届中日韩三国体育部长会议23日在韩国江原道平昌成功闭幕并通过了《平昌宣言》。 韩国文化体育观光部外信中心崔明洙协力官表示,体育和科技的关系日益密切,即将在2018年初举办 的平昌冬奥会将充分展现韩国IT技术等先进技术,让电视观众和现场观众都有耳目一新的体验。

图为中国国家体育总局局长、中国奥委会主席刘鹏和韩国文化体育观光部长官赵允旋。 本报驻韩国记者 邰举摄

(9月19日—9月25日)

本周焦点

3D打印声全息图问世

德国马普学会智能系统所报告了一种全新的制 用来操纵微尺度物体,还将改善医疗成像并推动超声 类迄今已知的宇宙中最大单一天体。 的新应用。

本周争鸣

脊髓修复让瘫痪动物行走自如

起的意大利神经外科专家卡纳维洛,与韩、美研究人 结果,对上述假设进行了迄今最严苛的测试,结果发 员进行的多个动物实验表明,化学物质聚乙二醇 现,宇宙在各个方向不一致几率仅为1/121000,说明 (PEG)能帮助修复狗和老鼠的受损脊髓,使其恢复行 宇宙没有方向。 走能力。卡纳维洛表示,这些修复技术将帮助他们明 年开展人头移植手术,但这一时间表受到一些科学家 的质疑,他们认为3到4年后才能开展人体脊髓修复 实验,开展人头移植试验至少要等7到8年。

本周明星

人工智能将有像人一样的视听功能

旨在使人工智能可以像人一样看和听。这一项目会 其用于人类的安全性和有效性。 持续多年,预计可能会对教育、娱乐、健康等产业产生 巨大影响。

"最"案现场

迄今最完整的数字版人脑结构图谱绘出

美国艾伦脑科学研究院绘出了迄今最完整的数 的结论。 字版人脑结构图谱,也是迄今最清晰脑部微观解剖学 结构图谱,其最大特点在于,将宏观高清人脑成像数 据和能解释大脑结构的细胞水平数据结合在一张图

大脑。该脑部图谱可在艾伦研究院官网公开获取,将 技术,构建系统生成、分析、整合、模拟数据的研究平

成为大脑研究人员的最新指南。 宇宙最大单一天体起源确认

欧洲空间天文台研究人员发现一"滴"极其明亮 造 3D 复合声场的方法——声全息图,即用 3D 打印机 的莱曼 α 斑点(LAB),并确认其形成于一个超巨椭圆 研究人员最近指出,他们在火星上发现了几个类似于 制造塑胶底片,其制造的声场可以通过非接触方式操 星系。而在此前长达15年时间里,学界对莱曼α斑 北美五大湖的大型湖泊遗迹,其由融化的雪水形成于 控液体和空气中的物体,比运用现有技术制造的声场 点起源和扩展的看法颇有争端。该斑点被命名为 20亿年到30亿年前,这些液态水出现在火星表面的 精密 100 多倍, 而且速度更快、成本更低。不但可被 LAB-1, 横跨 30 万光年, 是两个星系的家园, 也是人 时间比以前认为的更晚。最新研究有望重新书写这

最严苛测试证实"宇宙无方向"

目前,关于宇宙的大多数计算都始于一个基本假 设——哥白尼原则:宇宙是均匀并且各向同性的。英 国研究人员利用欧洲空间局普朗克卫星于2009年至 因声称已攻克人头移植手术主要障碍而声名鹊 2013年期间获得的宇宙微波背景辐射(CMB)的测量

前沿探索

DNA疫苗成功阻止猕猴感染寨卡病毒

美国过敏和传染病研究所科研人员开发出全新 的DNA(脱氧核糖核酸)寨卡疫苗,含有一段来自寨 IBM公司和美国麻省理工学院20日宣布,将联 体反应。动物实验证明,其能阻止猴子感染寨卡病 成,研究人员将钼硒化硫覆盖到三维的多孔硒化镍泡 合创建"激发大脑多媒体机器理解实验室(BM3C)", 毒。目前,该疫苗已经进人人体临床试验阶段,验证 沫上,使水制氢效率达实用水平,且成本低、无毒,有

冥王星心形区域冰封之谜揭开

法国科学家一项研究指出,冥王星心形区域的冰 山可通过表面特征和大气过程解释。这是科学家对 冥王星数千年来气候和地形变化进行计算机模拟重 建,并结合"新视野"号探测器观测到的地貌特征得出

欧盟增资8900万欧元用于人脑计划

元,以用于该项目"运作阶段"的研发。"人脑计划"是 中,就像人们常用的谷歌地图,可为脑科学家研究"导 欧盟委员会信息和通信技术旗舰计划之一。由6个 隐藏自己的情绪,它也能洞察。 航",从宏观层面进入细胞层面,更深刻地认识我们的 信息与通信技术研究平台组成,旨在借助信息与通讯

台,从而推动人脑科学研究加速发展。

火星早期的大湖由雪水融化形成

美国国家航空航天局(NASA)喷气推进实验室的 颗红色星球的历史,影响未来的火星研究和探测任

一周技术刷新

城市网络进行量子隐形传态技术上可行

量子隐形传态指将编码在光子中的量子信息从 一个地点远程传输到另一个地点。中加科学家分别 在中国合肥市和加拿大卡尔加里市通过数千米光纤 网络开展了量子隐形传态实验,两项独立研究表明, 通过城市网络进行量子隐形传态在技术上是可行的, 这为未来城市范围的量子技术和通讯网络,比如量子 互联网打下了坚实基础。

新复合催化剂可高效分解水制氢

美国休斯顿大学研究人员联合加州理工大学的 卡病毒的合成 DNA 片段,注射到体内后,细胞会分泌 同行,发现了一种能高效分解水制氢的新型复合催化 出很多类似寨卡病毒的小粒子,刺激免疫系统产生抗 剂,这种复合催化剂由钼硒化硫和多孔的硒化镍组 望克服水制氢的难题,推动氢燃料电池的发展。

奇观轶闻

通过无线电波洞察人的情绪

美国科学家研制出了一台名为"情商无线电 (EQ-Radio)"的设备,会向测试对象释放无线射频 波,并捕获反射回来的信号,以此测量他的呼吸模式 和心率。获得的数据会通过一个算法让不同的情绪 欧盟委员会日前为"人脑计划"增资8900万欧 信号与物理因素相匹配,并将人的情绪归类为四种状 态:悲伤、生气、高兴和喜悦。即便人戴着面具,竭力

(本栏目主持人 张梦然)