
家用微波炉"烤"出优质石墨烯

微波炉除了可以用来加热食物外,还能做什么?也许制"出高质量石墨烯。 你不相信,我们眼中的高科技产品——高质量石墨烯,

也可以用微波炉"烤"出来。美国罗格斯大学的研究小 维晶体,导电导热性能佳,具有很好的应用前景。但若 导电的氧化石墨烯,大大降低了其使用价值。因此,去 消除氧化石墨烯中几乎所有的氧成分,进而得到极高 单,生产出的石墨烯品质与最纯粹的石墨烯相差无几, 组在最新一期《科学》杂志网络版发表文章称,他们开 要得到广泛应用,就需要有经济的大规模制备方法做 除氧化石墨烯中的氧成分以获得高质量的石墨烯,成 质量的石墨烯成品。

科技日报华盛顿9月3日电(记者刘海英)家里的 发出一种新型微波制备法,可以用家庭用微波炉"烤 支撑。石墨烯来源于石墨,最简单的制备方法是使用 为过去20年来石墨烯研究领域的一大挑战。 化学物质将石墨一层一层地剥离,得到石墨烯。这种

此次罗格斯大学的研究人员发现,将剥离的氧化 石墨烯是由碳原子组成的只有一层原子厚度的二 方法的缺点是剥离过程中会发生氧化反应,形成不能 石墨烯放入1000瓦功率的微波炉中,烤上1秒钟,就能

领导该项研究的罗格斯大学工程学院材料科学与 工程系教授曼尼什·寇沃拉称,这一微波制备法十分简 可算是石墨烯研究领域的一大进步。

日电 (记者刘海英)美国国立

卫生研究院下属的国家补充 和综合治疗中心(NCCIH)日 受欢迎的非药物治疗手段,如 太极、针灸、瑜伽等,确实是治 疗或缓解慢性疼痛疾病的有 效手段,建议那些遭受慢性疼

困扰的人来说,药物并不能 完全解决问题,还会带来一 些副作用,因而他们常常会 求助于一些常见的非药物治 疗手段。但这些被视为补充 疗法的保健手段是否真的有 效果,还缺乏强有力的证据, 至少在美国还没有相关的指

此次,NCCIH研究人员 对过去50年里在美国进行的 105 项与疼痛疾病相关的随 机对照试验数据进行了研究, 分析常用于治疗背部疼痛、骨 关节痛、颈椎痛、纤维肌痛以 及严重的头痛和偏头痛这五 类慢性疼痛的7种非药物治 疗手段的效果,最后得出结 论:针灸和瑜伽可缓解背部疼 痛;针灸和太极可缓解骨关节 缓解颈椎痛;放松疗法对头痛 和偏头痛有不错的效果。

此外,尽管证据还不充分,研究人员仍认为,按摩疗 法、脊柱推拿和整骨疗法也能缓解背部疼痛,放松疗法 和太极也会对纤维肌痛患者有所帮助。

虽然此次研究获得的总体安全性信息并不多,但依 然表明这些保健活动都没有明显的副作用,这无疑给了 保健医生及慢性疼痛疾病患者一颗定心丸。

研究人员称,对于那些遭受特殊慢性疼痛疾病折磨 的患者来说,在进行药物治疗之余,应该考虑寻求一些 合适的非药物治疗手段辅助治疗。至于这些方法是否 能广泛用于不同的患者群体,还需要进行更多研究。

■今日视点

GUO JI XIN WEN

G20:讲好"中国故事"的契机

访法国可持续发展与国际关系研究所研究员王鑫博士

本报驻法国记者 李宏策

9月4日至5日,二十国集团(G20)领导人第十一 次峰会在杭州举行。与会国领袖和各界代表齐聚西 子湖畔,围绕"构建创新、活力、联动、包容的世界经 济"主题,为新时期拓展更紧密的国际合作指明方 向。作为G20历史上发展中国家参与最多的一次盛 会,发展中国家的发展问题受到格外关注。如何通过 合作、创新帮助欠发达国家社会经济发展和绿色低碳 转型,中国如何在构建全球治理机制的重要时期发挥 更大、更积极作用,科技日报驻法国记者就相关问题 采访了巴黎政治学院、法国可持续发展与国际关系研 究所研究员王鑫博士。

发展和减排面临资金缺口

2015年9月,各国在联合国可持续发展峰会上达 成《2030年可持续发展议程》,旨在通过17项可持续发 展目标消除极端贫困,战胜不平等和不公正,遏制气 候变化。去年12月,在《联合国气候变化框架公约》第 21次缔约方会议(COP21)上,196个国家和地区通过 了《巴黎协定》,揭开了全球应对气候变化的历史性新

王鑫认为,实现2030年可持续发展目标与应对气 候变化,是当前和未来一段时间全球共同面对的重大 挑战。这也意味着发展中国家需要同时肩负发展经 济和降低碳排放、实现可持续发展的双重任务,这对 基础设施还很不完善的非洲等地区欠发达国家尤为 困难。目前,非洲国家基础建设的最大难题在于缺乏 资金,仅依靠国际银行借贷、他国援助等方式筹集的 资金远远无法满足需求,未来亟须拓展、创新融资渠

授人以鱼不如授人以渔

中国作为发展中国家和新兴大国,主动肩负起应

展绿色金融,成立中国金融学会绿色金融专业委员 相关规则和标准方面积累了丰富经验。此外,在中国 政府引导下,越来越多的公私合作制(PPP)、特许经营 等模式被采用到基础设施项目中。这些制度上的创 新和改革是中国作为发展中国家在国家治理方面积

王鑫认为,可持续发展转型的资金需求不是仅靠 引社会资本。这样可以更综合有效地推动这些国家 进经济可持续、包容的增长与转型。

对气候变化、向可持续经济转型的责任,创新性地发 赠款与优惠贷款可以实现的,一些欠发达国家缺乏资 理能力,同时辅以科技与资金援助,帮助其更好的吸

的社会经济发展与绿色低碳转型,从而在全球绿色经 济领域拓展中国的影响力,提高全球治理的软实力。

此次 G20峰会,中国倡导弘扬共商共建共享的全 球治理理念,为国家和地区间开展更广泛、更包容的 合作提供了新的机遇。中国分享绿色金融等政策与 政府治理经验,同时欢迎其他发达国家参与,在传统 的南南合作、南北合作基础上发展第三方合作等新的 模式,集合各方力量共同促进提升非洲等发展中国家 自身政府治理能力,提高其使用资金的效率,从而吸 引更多私人部门投资,解决资金能力不足的问题

中法合作前景广阔

王鑫认为,杭州G20峰会的成功将促进国家合作 更为包容、开放,也有利于中法合作拓展新的前景。 法国在开展公私合营方面有着近200年的历史,从拿 破仑时代即已进行特许经营尝试,2004年又引入了英 美体系的公私合营模式,法国有效的法规体制已经被

法国与非洲国家关系紧密,中法可以通过第三方 合作,共同帮助非洲国家完善其自己的绿色金融与投 资制度体系。比如,中法合作帮助非洲国家建立适合 其国情的PPP相关机制与制度,并以此带动中法公共 于可持续转型的项目,进而促进未来中法通过PPP形 式在非洲开展更多项目,吸引更多私人部门的投资 同时保证投资方最低程度的盈利。王鑫还提议,未来 可考虑在中非论坛、法非论坛基础上创新性地创立 "中法非论坛"等新的合作平台,借此将中法各自的技 术、资金与影响力等优势结合在一起,通过政府引导, 带动更多私人部门资本进入缺乏发展资金的地区,促

喷水技术可助汽车发动机省油

科技日报柏林9月3日电 (记者顾钢)德国最大的 术应用到汽车批量生产中,帮助汽车业节能减排。

辆性能几乎没有不良影响。负责这项技术的博世公司 矩,其他方面不受影响。 执行副总裁斯特凡表示,喷水技术可以使涡轮增压发动 机获得额外的助力。据测试,带有喷水装置的涡轮增压 效果相当明显。

喷水技术是在原有涡轮增压发动机的基础上进行 汽车配件供应商博世公司最近在一款宝马车上成功应 了改进,其工作原理和燃油在内燃发动机上的喷射一 用了喷水涡轮增压技术,可以在不影响车辆使用性能的 样,只是增加了一个喷水管,高压细水喷射到发动机内 基础上,有效降低燃油消耗量。博世公司希望将这项技 形成雾状,除了提高燃油燃烧效率和增加动力外,还能 有效保护电动机过热。喷水技术所需要的水量很小,每 博世试验的这款宝马车型是 M4 GTS, 发动机采用 百公里仅需几百毫升蒸馏水, 一个充满的小水箱可以行 喷水涡轮增压后,汽车的百公里加速性能依然能达到少 驶几千公里。对于普通消费者来说,即使忘记给小水箱 于4秒,对于这款4缸发动机的跑车来说,喷水技术对车 添加水也没关系,发动机只是增加了燃油消耗和降低扭

车辆所需要的额外水箱很小,因此非常适合应用到 紧凑型家用轿车上,使车辆行驶更加高效,用户更加受 发动机比常规涡轮增压发动机平均可节省燃料4%,在 益。博世公司认为,这项技术不仅是个技术进步,而且对 高速路上或匀速行驶状况下,甚至可以节省燃油13%, 节能减排和环境保护也有很大好处。博世目前正与多家 欧洲汽车制造商洽谈,希望在更多车型中引入这项技术。

加拿大国际飞行表演节举行

9月3日,在加拿大多伦多,加拿大"雪鸟"飞行表演队进行表演。当日,为期3天的2016年加拿大国际飞行表演 节在多伦多开幕,来自美国、法国和加拿大等国家的飞行队为观众献上精彩的特技飞行表演。 新华社发(邹峥摄)

际要

(8月29日—9月4日)

本周焦点

首次太空 DNA 测序与地球上的结果"完美匹配"

美国国家航空航天局(NASA)30日宣布,刚过去 功完成微重力条件下的DNA测序,这标志着人类已迎 来"能对太空活体生物进行基因测序"的全新时代。

检测仪,不同的DNA分子会引起不一样的电流变化, HD164595恒星系,距地球大约95光年。 通过电流变化就能识别出这种基因序列的生物。

本周明星

华为技术:在芬兰创造4G移动网速新纪录

络速度的6倍多。从理论上来说,下载一部蓝光电影 了解星系团及其内部星系的形成过程。 只要44秒。但也有分析师认为,如此高的网速在现 实生活中比较难实现。

一周之"首"

新方法首次一步获得药物前体分子

中美两国化学家的一项联合研究成果,他们发明 前,新发现与其吻合,在某种程度上证实了这一点。 了一种全新的合成方法,只需一步就能将自然界丰富 的烃类有机分子转化成高附加值的手性腈类化合物, 这是一类非常重要的有机中间体,广泛用于药物和农 药的合成,具有极大的应用潜力。

纳米天线首次实现可见光波段内通讯

波段内操作的纳米无线光学通讯系统,更短波长的可 见光将大大缩小计算机芯片的尺寸。新系统的核心 没有造成人员伤亡,但火箭和有效载荷已被彻底摧毁。 技术是一种纳米天线,能让光子成群移动并高精控制 光子与表面等离子体间的相互转换,大大提高了无线 通讯效率,这对建筑节能是一大利好。

本周争鸣 美机构试图验证"外星人"信号未果

的周末,NASA 宇航员凯特·鲁宾斯在国际空间站内成 动用艾伦射电望远镜阵列,探测武仙星座内某个星系是否 发出无线电信号,即使扩大探测频率范围,依然没有结 果。这一轮探测缘起于一批俄罗斯天文学家的声明,他们 这次太空测序使用的是英国牛津纳米孔公司提 称"俄罗斯科学院射电望远镜-600"(RATAN-600)探测 供的 MinION 测序仪,只有手掌大小。测序原理是通 到波长为 2.7厘米、波束宽度水平方向大约 20 弧度秒、垂 工作,可为识别被寨卡病毒感染的血液提供参考,更 过纳米孔施加电流,同时让含有检测样本的液体流经 直方向大约2弧度分的无线电信号,来源于武仙星座内

"最"案现场

迄今最远星系团正值恒星"诞生潮"

法国科学家利用多台望远镜提供的数据,发现了 芬兰网络运营商 ELISA 称, 他们应用华为的技 迄今最遥远的星系团, 它发出的光穿越约 111 亿光年 中发现了大脑热传感物质, 在身体发烧的时候, 特殊 术,在一个测试网络中创造了4G移动网速的世界新 的漫长旅程,终被人类捕获。这一星系团尽管"年 脑神经细胞中的蛋白质会释放降温信号,调节体温。 纪录,达到惊人的1.9Gbps(1946Mbps),为目前商用网 轻",但正经历恒星"诞生潮",该研究将有助于更好地 不过人体的调温机理是否和实验鼠相同,以及是否能

迄今最古老化石现身格陵兰岛

澳大利亚的一个研究小组在格陵兰岛发现了一 些叠层石化石,其历史可追溯到37亿年前,比目前地 球上最早的生命化石还要早2.2亿年。此前有关基因 分子钟的研究认为,地球生命起源时间是40多亿年

前沿探索 "猎鹰9"火箭在测试时发生爆炸

北京时间9月1日晚,美国太空探索技术公司的"猎 鹰9"火箭在佛罗里达州卡纳维拉尔角发射场的一次常 美国波士顿大学科学家首次开发出能在可见光 规测试中发生爆炸,目前爆炸具体原因尚在调查中。该 公司发言人表示,这是一次常规的火箭测试,已经确认 史、被称为"人类祖母"的著名古人类,竟是因为从树

"太空卡车"计划将使空间货运更经济

而由美国波音公司和洛克希德—马丁公司联合设立 习惯。

的联合发射联盟又提出了全新的"太空卡车"计划,除 了回收第一级的发动机外,还将重复使用火箭第二 级。按照联合发射联盟的设想,未来5年内人类将开 美国搜索外星文明(SETI)研究所31日称,连续两天 始在近地轨道上建造基础设施,到2050年将在月球 上建设人类活动基地。而"太空卡车"将发挥类似货 物传送带的作用,使太空货运活动变得经济可行。

国际研究团队完成寨卡病毒基因测序

一个国际研究团队日前完成寨卡病毒基因测序 有利于诊断由寨卡病毒引发的相关疾病。虽然世界 卫生组织(WHO)今年10月才会正式审查这些材料, 但迫于寨卡病毒诊断和治疗的急切需求,WHO已提 前批准将测序结果作为参考标准用于医疗。

大脑神经细胞中存在"热传感器"

德国海德堡大学医院研究人员首次在动物实验 用于开发新疗法还需进一步研究。

一周技术刷新

谷歌将用人工智能算法精准治疗癌症

谷歌机器学习分部"深度思维"公司(DeepMind) 打算利用人工智能将复杂的癌症放疗方案流程化,并 使治疗中的"分割"时间从4小时缩短为1小时。这将 大大减轻医生负担和病人痛苦。此外,这种算法还能 用于其他部位的癌症治疗。

奇观轶闻

"人类祖母"原来是摔死的

露西,那个在埃塞俄比亚发现的拥有318万年历 上摔下受伤而死的。该研究分析了露西骸骨中一些 部位的骨折情况,发现了不同寻常的证据,证明已经 近来一些太空企业在试验回收使用火箭第一级, 灭绝的古人类阿法南方古猿有在树上居住(树栖)的 (本栏目主持人 **张梦然**)