■值班主任 王俊鸣 责编 聂翠蓉 陈丹

天空没有留下痕迹,但它们已飞过

GUO WAI JI SHU QIAN YAN

10 款超音速飞机想圆人类"更高、更快、更强"梦

本报记者 刘 霞 综合外电

自怀特兄弟制造的第一架飞机"飞行者1号"掠 过天空,100多年来航空领域已取得了巨大的进步。

在此期间,工程师们制造出多款远超出怀特兄弟 想象的、能飞行得更高且更快的飞机。美国趣味科学 网站在近日的报道中,列出了其中飞行速度最快的 10款载人军事超音速飞机。

F-35"闪电 II"战斗机

F-35"闪电 II"联合攻击战斗机是美军的下一代 喷气式战斗机,是一款由美国洛克希德·马丁公司设 计及生产的单座单发攻击战斗机,具有全天候打击敌 方目标的能力,主要用于前线支援、目标轰炸、防空截

与现役战斗机相比,F-35具备三大优势:一是发 动机动力强劲;二是隐身性能好,可隐身突防;三是机 载电子设备先进。作为一款四代战斗机,F-35战斗 机可进行视距外精确打击,具备超音速巡航和超机动 能力。F-35 无疑是现役垂直短距起降战斗机中最强

1996年5月,美国国防部正式提出联合打击战斗 机计划,这一计划要求设计制造一款符合美国海、空 和陆战队通用要求,可节约高达三分之一维修费用的 新型通用战斗机。因此,F-35应运而生。F-35的最 大速度为1.6马赫,大约为1930公里/小时。

尽管其拥有无与伦比的能力,但F-35并非完美 无缺,除升力系统设计有问题之外,其发动机叶片寿 命、弹仓设计和电子通信设备破坏隐身性能等一系列 难以解决的技术问题,使其一直饱受延期交付和成本

不过,这款喷气式战斗机仍有望最终替代美军空军、 海军和海军陆战队已服役多年、"垂垂老矣"的战斗机。

苏-27侧卫战斗机

苏-27侧卫战斗机(Flanker)是一款双引擎战斗 机,是由前苏联苏霍伊设计局研制的单座双发全天候 有空中优势的第四代重型战斗机,主要任务是防空、 护航、海上巡逻等。

该飞机于1977年5月进行了首次飞行,并于1985 年开始正式为前苏联空军服务,其最大速度高达2.35 马赫(约合2500公里/小时)。

苏-27侧卫战斗机声名显赫,是同时代最强大的 战斗机。在1989年巴黎航展上,前苏联宣布了一条 震惊世界航空界的消息:在1986至1988年,苏-27创 下了爬升和飞行高度两项世界纪录。

另外,1996年12月,苏-27参加"96工业品艺术 设计师竞赛",夺得了工业品艺术设计第一名一荣获 "胜利女神"奖章。一种武器装备居然赢得艺术设计 大奖,听起来不可思议,不过,细想也确有道理。 苏-27不仅具有出色的战术、技术性能和优良的飞行 品质,同时还拥有十分漂亮的外观,它高大、威猛,整 体造型流畅、饱满,充满了对工业美学的追求,可谓实

目前,俄罗斯、白俄罗斯和乌克兰的军队仍在使 用这款战斗机,苏-27系列战斗机已成为俄罗斯军机 中最成功的机型。

F-111"土豚"战斗/攻击机

F-111"土豚"(Aardvark)是一款由美国通用动力 于上世纪60年代开发制造、美国空军与海军联合参 与设计的成品多用途中距离战斗/攻击机。该机型在 1967年首次为美国空军服务,主要用于战略轰炸行 动、进行侦察以及执行电子战。F-111的最大飞行速 度为2.5马赫(约合2655公里/小时)。

F-111"土豚"参加了自越战以来的各次美军大型 作战行动,澳大利亚空军从1973年开始装备该型战斗轰 炸机,编号为F-111C。著名的"喷火"特技飞行表演就 是澳空军飞行表演队的传统保留项目,飞机在空中飞行 时,后燃器放射熊熊烈火,犹如火龙飞舞,十分壮观。

1981年3月,美国空军发布提升型战术战斗机 (ETF) 计划, 以取代 F-111, 1997年, 美国空军的 F-111全部退役。澳大利亚空军也于2010年12月2 日在昆士兰州的阿姆伯利空军基地举行了最后一批 F-111C战斗轰炸机的退役仪式。这意味着从首架原 型机 F-111A 首飞已服役 46年的变掠翼、远程打击飞 机 F-111 退出历史舞台。

F-15 鹰式战斗机

F-15 鹰式战斗机是一种双引擎战术战斗机,是全 天候、高机动性的战术战斗机,针对获得和维持空中优 势而设计的它,是美国空军现役的主力战机之一。

F-15 鹰式战斗机 1972年7月首次试飞, 1974年 首架量产机交付美国空军使用,直到现在。F-15 鹰 式战斗机的最大飞行速度为2.5马赫(约合2655公

F-15服役至今近40年,各种改型数十种,日本还 进行了仿造,外销沙特和以色列等六个国家和地区。 参加大小战争100余场,击落敌机100余架,没有一架 在战场上被击落的记录,被认为是有史以来最成功的 战斗机。F-15鹰式战斗机可能继续为美国空军服役 直到2025年后。

米格-31"猎狐犬"超音速飞机

前苏联主要飞机设计及制造商米高扬设计局研 制的米格-31"猎狐犬"是一款大型、双引擎超音速飞 机,主要目的是执行防空拦截任务。这款双座重型拦 截战斗机在1975年9月进行了首飞,1982年开始正式 为前苏联防空部队服务。

米格-31"猎狐犬"战斗机是全世界起飞重量最

大、飞行速度最快的作战机型,其特点是速度快、火力 强。机长22.69米、翼展13.46米、机高6.15米,装有两 台D-30-6加力式涡扇发动机,具备高超的超音速巡 航能力,最大飞行速度为2.83马赫,约合3000公里/ 小时,甚至能在低海拔地区以超音速飞行,最大续航 时间3.6小时,一次空中加油6到7小时。

米格-31战斗机的主要改进型包括米格-31B、米 格-31BM、米格-31M等,至今仍是俄罗斯空军主力

XB-70"女战神"轰炸机

XB-70"女战神"轰炸机(Valkyrie)是由美国空军 战略司令部上世纪50年代授权北美航空设计制造, XB-70计划的初衷是设计出一款能以超音速、超高 空飞行的方式突破敌对国家的防空网,进一步投掷传 统或核武器的轰炸机。

但由于进入60年代后地对空飞弹的技术逐渐提 升,对XB-70的潜在威胁大增,再加上该计划昂贵的 开发费用,使它在经济效益上比不过作用类似的洲际 弹道飞弹,因此,虽然该飞机拥有当时最先进的技术 概念与惊人的实力,但最后仍抵挡不过淘汰的命运, 只制造出两台原型实验机后,该计划就惨遭取消。

这两款原型机装备六台GE YJ93发动机,翼展32 米,最大速度3.1马赫。从1964年到1969年,这两架原 型机进行了超音速实验飞行。1966年,其中的一架被 F104撞毁,目前仅存一架的XB-70"女战神"战略轰炸 机是美国俄亥俄州戴顿市空军博物馆镇馆之宝。

虽然 XB-70作为一种武器来发展的目的胎死腹 但透过它的实际飞行,美国航空界仍然获得了许 多重要资料,间接协助了日后的超音速运输计划 (SST)的实现。

贝尔 X-2"星爆"火箭发动机

贝尔 X-2"星爆"(Starbuster)于1945年由贝尔飞 机公司、美国空军、NASA的前身美国国家航空咨询

委员会共同承担研制,它是一种装备火箭发动机、后 掠翼的试验用机,主要用途是为了研究飞行器在高空 高速(2-3马赫)飞行条件下的气动力加热对机体结 构的影响,以及飞行稳定性和操控有效性。

贝尔 X-2(昵称"星爆")于1955年11月完成了自 己的第一次有动力飞行。1956年,X-2在上尉米尔 本·阿帕特的驾驶下,飞行速度达到了3.2马赫(约合 3370公里/小时),飞行高度达到19800米。然而,到 达这一速度之后不久,阿帕特试图转弯,当时的速度 仍然超过3马赫,飞机在此过程中失去了控制,导致 了坠机,阿帕特也在空难中不幸牺牲。这一悲剧性的 事故导致了X-2项目的终结。

米格-25"狐蝠"战斗机

米格-25"狐蝠"(Foxbat)战斗机是米高扬设计 局研制的高空高速截击歼击机,是世界上第一种速度 超过3马赫的战斗机。米格-25的研制主要是为了对 付美国当时正在研发中的XB-70"女战神"轰炸机与 "黑鸟"高空超音速侦察机,这种侦察机的最高速度同 样达到3马赫,普通的歼击机根本无法追上,更遑论 跟踪监视拦截,只有米格-25拥有拦截SR-71的条 件。米格-25原型机于1964年首次试飞,1969年开始 装备部队,1970年开始为前苏联防空部队服务。

米格-25战斗机的最高速度高达3.2马赫(约合 3524公里/小时)。目前,"狐蝠"仍在为俄罗斯空军提 供有限的服务,除此之外,阿尔及利亚空军和叙利亚 空军也在使用这款飞机。

洛克希德的 YF-12 战斗机

YF-12战斗机是由洛克希德公司于上世纪50年 代晚期至60年代初期研制的一款原型机。这架庞大 的双座三马赫拦截机,也是美国唯一成功试飞验证过 的三马赫拦截机。

对 YF-12战斗机的飞行测试在美国空军的顶级 测试和训练基地"51区"完成。YF-12战斗机是美国

空军根据A-12侦察机发展而来,A-12是洛克希德公 司为中央情报局设计生产的侦察机。YF-12在外观 上与A-12最大的差异在于机鼻的部分。

第一架YF-12于1963年8月进行试飞,当时的最 大飞行速度高达3.2马赫(约合3330公里/小时),飞行 高度为22400米。次年3月,一架YF-12A成功进行 一次拦截演习;以高度19695米、2.2马赫的速度拦截 了一架在12120米飞行的Q-2C战斗机。最终,这一

1969年两架YF-12转交给美国国家航空航天局 (NASA)的达顿试验中心,以进行更多的高速飞行验 证,不过1971年其中一架YF-12于飞行中发生燃料 线路故障引发火灾而毁。剩下的一架YF-12A于 1979年转交给美国空军博物馆作为永久展示。

X-15高超音速战斗机

X-15 高超音速战斗机是 NASA 和美国空军携手 进行的X-飞机(X-plane)系列试验机中的一架火箭 动力飞机,其前身是贝尔X-1飞机,它同时也是美国 建造的第一个载人亚轨道飞行器。早在上世纪60年 代初,X-15就创下了一系列速度和飞行高度记录。 例如,在1963年,有两架次(由同一飞行员驾驶)到达 国际航空联合会的宇宙飞行标准高度,即到达100千 米。由于其飞行高度到达大气层的边缘,为之后的研 究提供了重要的资料。直至2004年"太空船一号"的 第三次太空之行,X-15所创下的飞行高度在相当长 时间未被任何有人驾驶飞机超越(航天飞机除外)。

X-15于1970年退役,在近十年的时间里,它先 后创造了6.72马赫(约合7274公里/小时)的世界记 录,它的试验飞行几乎涉及了高超音速研究的所有领 域,并为美国后来水星、双子星、阿波罗有人太空飞行 计划和航天飞机的发展提供了极其珍贵的试验数 据。在X-15整个试验飞行过程中,研究人员根据其 飞行数据总共撰写了765份有价值的研究报告。

有趣的是,在整个X-15计划的飞行项目中,有 13架次到达了80千米以上的高度,这是美国空军所 制订宇宙飞行的标准高度,驾驶这13架次的八名飞 行员因此获得宇航员的身份。另外,还有两名飞行员 获颁NASA的"宇航员之翼"勋章。

当然,人类追求更高、更快、更强的勇气和决心永 不停息,除了上述超音速飞机外,美国还研制出了多 款超音速无人飞行器,包括美国空军研究实验室 (AFRL)与国防高级研究计划局(DARPA)联合研制 的超燃冲压发动机验证机——波音 X-51"乘波者"高 超音速无人飞行器、NASA秘密研制的无人驾驶飞机 X-43系列高超音速飞机以及"猎鹰"HTV-2号超音 速飞机(HTV-2)等。

X-51"乘波者"于2013年5月第4次试飞成功,以 5.1 倍音速飞行了约3分半钟。这款飞机目前仍在试 验阶段。X-43系列飞行器的最大飞行速度为1.1144 万公里/小时。目前,该型号飞机全球只有三架。

"猎鹰"HTV-2号超音速飞机是美国军方研制的 史上飞行速度最快的无人飞机,由美国空军和国防部 下属的国防高级研究计划局共同研制,每架造价3.08 亿美元,它用"人牛怪Ⅳ型"运载火箭发射后,在大气 层外围的亚轨道最快速度能达到20倍音速(约合每 小时 2.8 万公里)。2011年 8月 11日上午,"猎鹰" HTV-2飞机在美国加州范登堡空军基地成功发射升 空,但在独自飞行并返回地球时失去联系。

这些超音速军用飞机或寿终正寝、或光荣退役、 或胎死腹中、或正当盛年,无一不是人类智慧的结 晶。天空没有留下痕迹,但它们已飞过,留给人类无 尽的回忆和想象。

可穿戴技术让医疗设备"更小、更软、更智能"

本报记者 王小龙 综合外电

随着技术的进步,电子产品尤其是可穿戴设备越 来越小、越来越软。这一趋势也延伸到了医疗设备领 域。科学家正在开发新的更小巧、柔软、智能的医疗 设备。由于能与人体很好地融为一体,这些柔软又有 弹性的设备在被植入或使用后,从外面看起来不会有 任何异样。从炫酷的智能纹身到能让瘫痪病人重新 站起来的长期植入装置,下面这几种迷人的技术或许 很快就能获得应用。

智能纹身

"当你用过这种类似于创可贴的东西后,你就 会发现它像你身体的一部分,你完全没有感觉,但 它仍然在工作。"这或许是对智能纹身产品最通俗 易懂的一种描述。这种纹身也被称为生物印章,包 含柔性电路,能以无线的方式供电,具有足够的弹 性,能跟随皮肤一起拉伸变形。这些无线智能纹身 能解决目前临床上面临的许多问题,具有很多潜在

目前科学家们正在关注如何将其用于重症新生 儿监护和睡眠实验监测。位于美国马萨诸塞州的 MC10公司正在与一个科学家团队合作进行临床试 验,预计今年晚些时候就能推出第一款产品。

皮肤传感器

美国加州大学纳米工程学教授约瑟夫·王研发了 一款极具未来气息的传感器,他是圣迭戈可穿戴传感 器中心的主管。这种传感器能通过检测汗液、唾液和 眼泪的方式,提供有价值的健身和医疗信息。

此前,该团队还开发出一种能持续检测血糖水平 的纹身贴,以及一种放置在口腔中就能获得尿酸数据 的柔性检测装置。这些数据通常都需要指血或静脉 抽血测试才能获得,对糖尿病和痛风患者而言至关重 要。该团队表示,他们正在一些国际公司的帮助下, 开发和推广这些新兴的传感器技术。

纳米药物贴片

韩国首尔国立大学化学和生物工程学副教授金 大贤和他的同事试图用纳米技术打造下一代生物医 学系统。他们已经开发出一种能够携带一天药量的 纳米药物贴片。

2014年,金大贤的研究小组提出了包含数据存 储、诊断工具以及药物在内的,具有柔性和延展性 的柔性电子贴片。这种皮肤贴片能够检测出帕金 森氏病独特的抖动模式,并将收集到的数据存储起 来备用。当检测到帕金森氏病特有的抖动模式时, 其内置的热量和温度传感器能自动释放出定量药物 进行治疗。

注射式大脑监测系统

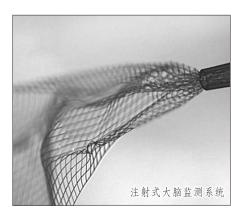
尽管目前已有监测癫痫和脑损伤患者的植入技 术,但这些设备较硬和尖锐,对长期监测来说是一个 挑战。美国哈佛大学专注于纳米技术的化学教授查 尔斯·利伯,将大脑组织比喻成一碗在不断运动的豆 腐。而人们需要的是一种能监测大脑、刺激大脑也能 和大脑互动,但没有任何机械应力和载荷的装置。

利伯的研究小组所开发出的注射式大脑检测系

统,如此之小,可以通过注射器直接注射到脑组织 中。注射后,纳米电子网会自行打开,可以检测大脑 活动,刺激组织,甚至与神经元相互作用。

柔性植入装置

瑞士洛桑联邦理工学院工程学院的斯蒂芬妮· 拉科和格雷·库尔蒂纳在2015年年初宣布,他们已 经开发出用于治疗脊髓损伤的植入物。这种名为 e-Dura 的装置可在包裹一层保护膜后直接植入脊 髓下方。在那里,它可以为在康复期间的患者提供 电和化学刺激。


该装置所具备的柔性和生物相容性,能大幅降低 炎症和损害组织的可能性,这意味着它可以植入很长 的时间。在试验中,研究人员将该设备植入瘫痪小鼠 体内,经过数周训练后,小鼠恢复了行走能力。相关 结果发表在了《科学》杂志上。

研究人员称,e-Dura是目前为数不多的几种能 够长期植入的柔性刺激装置。这表明可植入式柔性 器件能成为一种可供选择的疗法。

与此同时,复制人类的触觉技术也正在越来越成 熟。美国斯坦福大学化学工程教授鲍哲楠还开发出 了能感知压力和温度并具有自愈功能的人造皮肤。 她的研究小组最新电子皮肤包含有一个传感器阵列, 已经能够识别出握手时的力度。

在这个多学科交叉的研究领域,曾经硬而脆的电 子元件都能变得像皮肤一样柔软而又有弹性。或许 若干年后,坚硬、不能见水、无法折叠——这些电子产 品给人们的印象将不复存在。

