丙申年三月初三 总第10594期 国内统一刊号 CN11-0078 代号 1-97

http://www.stdaily.com

2016 年 4 月 9 日

今日4版

肿瘤可视化靶向治疗有望实现

科技日报讯 (通讯员张华 记者冯国 区域,使治疗药物只在近红外光照射的肿瘤 梧)天津大学常津教授团队首次将近红外光 区域内发生作用,从而最大程度降低抗癌药 控技术应用于基因的选择性表达,研究出一物对人体正常组织和细胞产生的副作用。" 种借助近红外光的选择性照射实现对肿瘤 进行靶向治疗的平台技术。研究成果《基于 上转换微米棒的选择性光控基因表达》日前

传统的化疗药物在杀灭肿瘤细胞的同 时也会杀伤正常细胞,因此近年来"肿瘤靶 胞时,该结合体的上转换微米棒可将近红外

发表在国际权威期刊《先进材料》上。

■最新发现与创新

近红外光让药物"制导"更快更准

该研究成果是将携带绿色荧光蛋白基因 (作为治疗基因和药物模型)的二氧化硅微球 载体和光敏分子的一端连接,再将光敏分子 的另一端和上转换微米棒连在一起,将该结 合体与癌细胞共培养。当近红外光照射癌细

向治疗"成为肿瘤治疗领域的研究热点。常 光转换成紫外光,紫外光促使光敏分子和上 津说:"可通过控制近红外光集中照射肿瘤 转换微米棒发生断裂,使携带绿色荧光蛋白 基因的二氧化硅载体进入到癌细胞。当癌细 胞内的微环境使绿色荧光蛋白基因(作为治 疗基因和药物模型)从二氧化硅上释放,并转 录和翻译成能发出绿色荧光的蛋白,就可通 料标记的治疗基因和药物,就可通过荧光共 聚焦显微镜动态监测治疗基因和药物在肿瘤 细胞的作用过程,实现可视化的靶向治疗。

大 大 用

中国目前是世界上唯一完全掌握微堆研究建造技术的国家

■周末特别策划

第四届核安全峰会已经落幕,围绕峰会的议题仍

堆芯只有高压锅大小的微堆(全称微型中子源反应

3月底,在圆满完成低浓化改造后,微堆首次实现 满功率运行。于是,世界目光聚焦微堆诞生地——位 于北京西郊的中国原子能科学研究院(以下简称原子验仪器,操作简单,但用途不少,能进行中子活化分析、

这一重要进展被写入《中美核安全合作联合声明》。 价,微堆低浓化改造,是降低高浓铀流失风险、提升核 困扰史学界的百年谜案——清光绪帝之死因。

但其实微堆离我们的生活并不远。

样,上至天文、下至地理,涉及地质学、地球化学、生命 截段和衣物上含有剧毒砒霜,而其腐败尸体仅沾染在部 科学等众多学科。"原子能院微堆室主任李义国说,分 分衣物和头发上的砒霜总量就已高达约201毫克。

新华社深圳4月8日电(记

者刘大江 白瑜)你知道机器人也

在备战高考吗?今后3至5年内,

中国研制的机器人高考成绩将超 过一本线,日本研制的机器人预

计2021年前考上东京大学……

这些最前沿的人工智能技术,在8

日于深圳开幕的第四届中国电子

国新一代信息技术产业的展示

平台,也是目前亚洲规模最大的

在。在开幕式之后举行"人工智

屏幕即时显示发言内容,这是科

大讯飞的"听见"智能语音系统 在发挥作用,可以将语音即时转

换成文字,准确率达95%以上。 3000件新产品、新技术、炫

可与人进行情感交流;在虚拟现

人们可以"走进"数千公里之外的

园区建筑,进行沉浸式体验;乐视

的首款电动概念车、深圳零度联 手腾讯共同研发的首款无人机产

品空影YING以及零度探索者无

人机 2.0 等一系列夺人眼球的产

"创新·智能·融合"为主题,分为

CITE主题馆、平板显示馆、智能

制造与3D打印馆等9个展馆。

其中,智慧家庭、传感器与物联

记者了解到,本届博览会以

品均亮相展会现场。

网、机器人、互联网+、平板显示、新能源等六大专区尤

其引人注目。智慧家庭专区重点展示老龄化社会健康

管理解决方案,传感器与物联网专区探索物联网产业

生态圈的发展模式,机器人专区展示工业机器人和服

务机器人的技术突破,互联网+专区让人们看到互联

网如何重塑日常生活,平板显示专区发布行业最新科

技发展趋势,新能源专区重点展示新能源汽车、充电桩

等新能源产业链上的最新成果。

动,重点发布超过3000件新产品、新技术。

该博览会由工业和信息化 部、深圳市政府联合主办,是中

博览会上,炫科技无处不

信息博览会上可一窥端倪。

电子信息综合性博览会。

析结果为不少研究提供了科学依据。

揭开百年谜案 把脉苍生健康

原子能院的原型微堆的每一根燃料元件的直径仅 隙只有5.48毫米,这些燃料元件被放置在实验用的"鸟 笼架"内。"鸟笼架"是直径240毫米、高270毫米的狭小

在业内,微堆也被称"傻瓜堆",因为它类似一个实 核仪器探头的考验、教学及培训、少量同位素生产等。

2008年,"长相"精致的微堆展示大"威力",它与央 国防科工局局长、国家原子能机构主任许达哲评 视、清西陵及北京市法医检验鉴定中心等共同揭开了

该专题研究由光绪帝遗物发辫入手,历时五年,利 用微堆中子活化分析技术测试了发辫中砷的含量,并结 "从 1984年至今, 我们利用微堆分析的样品多种多 合其他技术手段, 经科学研究分析测算表明光绪的头发

侦察思维解决历史疑难问题的成功尝试,开辟了学术 二者的差别是堆芯尺寸、燃料元件尺寸。

因为具有小型化、易操作、功率低、固有安全性好 量元素质检方面的某些空白。 最近,一个没有散热塔,没有高耸烟囱,核反应堆。有5毫米,换言之只有约5张纸的厚度,每两根元件间。等优点,在大中城市人口稠密的大学和研究机构内,不

光绪死因的确证,被认为是运用现代科学技术和 运行的唯一商用微堆。与原子能院的原型微堆相比, 视频发送需求。

深圳微堆建成后,利用中子活化法填补了深圳微

当时,随着珠三角现代工农业的迅猛发展,大量人 细介绍了此次任务的特点。 工合成有机化合物被引入到自然环境中,包括一系列 在改革开放前沿深圳,原子能院帮助深圳大学设 有机卤素污染物,这些卤素污染物有致癌、致畸、致突

堆是我反应堆"走出去"的先

应堆"走出去"的先行者。从上世纪80年代末开始,我国 的微堆在研制完成后迈出国门,在多个国家作为核能研究 加纳微堆低浓铀供应协议。2015年12月,我国与美国 和有人交会对接的目标;天 设施落地,并发挥了重要作用。截至目前,原子能院已为 签订加纳微堆低浓铀燃料设计、加工合同。

要求,今年6月我国要帮助加纳完成微堆低浓铀燃料加 化工作也已提上日程。

2014年9月,我国与国际原子能机构和加纳签订了 为目标飞行器,是完成无人

考虑到核不扩散问题,我国正不遗余力地开展全 小型全空间站的雏形,最显 原子能院微堆室主任李义国告诉记者,按照合同 球微堆低浓化工作。除了加纳,尼日利亚的微堆低浓 著的特点是增加了推进剂

邮件上行功能,而天宫二号 增加了邮件下行能力。航天 员在天宫二号舱内可以进行 收发邮件操作。"北京航天飞 行控制中心副主任李剑此间 向记者介绍,这次任务,中心 将实现航天员和地面无障碍 通信,传输速度可满足音频、

在北京飞控中心建成20 周年之际,负责该中心天宫 二号任务的李剑,向记者详

轨道控制模式 更加接近于未来 空间站要求

与天宫一号相比,天宫 二号任务有显著区别。

李剑说,天宫一号被称 宫二号作为空间实验室,是 补加系统,其储箱设计和天 宫一号完全不同。

此次任务组合体飞行时 间长达30天,与神舟十号相 比增加了一倍,这对任务筹 划提出了更高要求。中心不 光要完成轨道控制、上行控 制等,航天员在轨期间还要 组织天地协同,以及载荷试 验、科普教育等活动。

此前交会对接任务是 在距地面343公里的轨道, 对星下同一地点的重访周 期为2天;天宫二号任务轨 道距地面近400公里,重访 周期约为3天,这一高度航 天器受大气衰减更小,与将 来大体量空间站运行的轨 道相同。李剑表示,天宫二 号任务的轨道控制与任务 组织模式也将更加接近于 未来空间站。

飞船发射,定 点瞄准变为动 态瞄准

由于天宫二号任务的轨 道提高,轨道控制策略需要

全部重新设计,由此还带来有些变轨间隔圈次缩短。 "以前完成轨道确定工作至少在一圈半到两圈 以上,此次任务最短的要求在一圈之内完成。"他表 示,短弧段定轨对北京飞控中心提出了更高的精度

李剑介绍,天宫二号的交会对接做准备过程与 天宫一号全然不同。

此前交会对接任务中,采取定点瞄准发射方式, 提前精确预报某天某时几分几秒,瞄准某一点发射 飞船,让飞船和目标飞行器相互靠近。"但未来空间 氨酸(H3K4)上的甲基化,是用来标记该区段DNA 站这么大体量的航天器不可能为对接而调整自己的 姿态或轨道高度,这样太费燃料。"李剑说,为此空间 实验室任务将变为动态瞄准,根据空间实验室的轨 道情况,调整飞船发射窗口。这对空间实验室长周 期预报轨道精度提出了极高要求。

将利用货运飞船进行推进剂补加

空间实验室任务中,货运飞船是全新设计的飞

"推进剂补加是'慢工出细活'的过程,非常复 这一调控机制被揭示,不仅对癌症发生提供了 杂,需要多天完成。"李剑说,以前无人及载人飞船的 船跟天宫二号增加了液路连接,补加过程控制步骤 多,流程复杂,出现应急情况还要进行在轨处置,需 要地面飞控进行复杂的操作。

任务全态模式演练已完成

"要确保天上运行万无一失,先要在地面做'联 试',把整个各种应急和正常程序走一遍。"李剑说。

他介绍,北京飞控中心已在地面与天宫二号、神 舟十一号及天舟一号建立无线通信链路,用真实的 测控站和任务软件模拟了任务全过程,确保接口匹 配,控制协同。

这一联试过程比真实任务更为复杂,覆盖了各 种应急控制分支。李剑表示,从飞船发射后的大气 层外救生到应急返回,北京飞控中心对各类应急预 案均进行了检验。这也是空间实验室和飞船出厂必 须经历的一个环节。

目前,该中心针对长征七号火箭首飞、天宫二 号、神舟十一号、天舟一号等任务建立了多个型号任 务团队,同步开展联调联试工作,为后续执行各项任 务奠定了坚实基础。(科技日报北京4月8日电)

场会,面对面指导农民科学防控,提高技术到位率,以保障今年午季农作物丰产丰收。图为中心工作人员在示范推广无人机喷药防治病虫害技术。新华社记者 陶明摄

基因活性调控新机制有望抑制癌变

科技日报上海4月8日电 (李瑶 记者王春)复 威学术杂志《细胞》上。 旦大学生物医学研究院蓝斐教授实验室和施扬教 授一石雨江教授实验室合作发现:在癌细胞中,染色 一原因。在DNA之外,作为遗传物质载体的染色质 酶,将原本的高活性转化成低活性状态(H3K4me1), 质中的增强子失控会过度强化附近癌基因的活性, 上还有另一种物质——组蛋白。组蛋白甲基化的功 使周围的基因活动保持在正常范围,从而阻止细胞 船,最大特点是推进剂补加。 导致细胞异常甚至癌变,同时出现在该区域的蛋白 能就像是为DNA"贴标签",来告诉基因组一段段特 癌变。 据了解,本届博览会吸引了来自世界各国的超过 质RACK7和去甲基化酶KDM5C,如同安装了基因 定的DNA序列如何编码、有什么作用。通俗讲,甲 1700家行业领军企业参展,同期举办100余场研讨活 调控"开关",使基因表达保持在正常范围,从而抑制 基化的多少和基因活性关系密切。 癌变。此项研究成果发表在4月7日出版的世界权

此次研究的对象——发生在组蛋白 H3 第 4 位赖 的药物靶点和治疗思路。

活性的。研究发现,活性程度高的H3K4me3,能增强 附近的癌基因活性和细胞转移能力,易造成癌变。 研究团队的这项创新性发现相当于找到了一种连接 肿瘤基因的调控"开关",可以控制基因变化快与 慢。研究组顺藤摸瓜,找到了一种名为RACK7的蛋 癌症产生的潜在原因有很多,DNA突变并非唯 白质,它可以吸引名为 KDM5C 的组蛋白去甲基化

一种新的理论解释,更为癌症的个性化治疗提供新 对接机构主要是电路连接。为了补加燃料,货运飞

首块纳米晶体"墨水"制成的晶体管问世 将促进柔性电子和可穿戴设备研制

科技日报北京4月8日电(记者刘霞)晶体管是 体(银)、一种绝缘体(氧化铝)、一种半导体(硒化镉) 一层以氧化铝纳米晶体为基础的绝缘体,再放上一层 按顺序放置。他们称,这种效应晶体管或可用3D打 层甚至半导体掺杂剂都能由纳米晶体制造。' 印技术制造出来,有望用于物联网、柔性电子和可穿

子分散在液体内,制造出四种纳米晶体墨水:一种导 下银墨水做晶体管的门电极。接下来,在其上面放置 用我们希望的构造组合在一起。"

电子设备的基本元件,但其构造过程非常复杂,需要 以及一种有掺杂物(银、铟混合物)的导体。研究人员 以硒化镉纳米晶体为基础的半导体,最后加上另一层 高温且高度真空的条件。美韩科学家在《科学》杂志 之一、韩国地质矿产研究所的崔志赫(音译)说:"我们 铟/银混合物,形成了晶体管的源电极和漏电极。当 上报告了一种新型制造方法,将液体纳米晶体"墨水"首次证实,晶体管所有的组件金属层、绝缘层、半导体 以较低温加热这套系统时,铟掺杂从这些电极扩散到 叠。更进一步,既然纳米尺度的晶体墨水都可以操

不过在制造过程中,需要采用精确的方式将其堆 放。首先,导电的银纳米晶体墨水从液体中沉淀在一 究时,要确保添加第二层不会洗掉第一层,依此类 直接定制生产柔性基 据宾夕法尼亚大学官网消息,研究人员在实验中 个被光刻用掩模处理过的柔性塑料表面,随后,快速 推。我们必须在纳米晶体刚进入溶液以及沉淀后,对 先将拥有晶体管电学属性的纳米晶体,或球形纳米粒 旋转将其画在一个平坦的层内。接着将掩模移走,留 其表面进行处理,确保它们拥有合适的电学属性并采 事? 当然,设计过程难

半导体组件中。

参与研究的专家卡根说:"用溶液基材料进行研 材料制成特殊"纤维"

卡根表示,新过程的工作温度比传统方法低,因此, 他们能同时在同一块柔性塑料背衬上制造多个晶体管, "大面积和更低温度制造晶体管是包括物联网、大区域柔 性电子和可穿戴设备等多项新兴技术的目标"。

都说未来的晶体管很牛,不但要像传统晶体管 鸡、嫁狗随狗",拥有超强适应能力。高温生产显然 会破坏各类柔性基材,所以如何低温操作成为必答 题。新的制造工艺恰到好处地给出答案——精准堆 控至此,何不将晶体管

材,一步到位岂不更省 免更复杂。

