种技的教

GUO JI DA SHI YE

■值班主任 王俊鸣 责编 聂翠蓉 王小龙

据英国广播公司(BBC)近日报道,目前人类最快的飞行速度为39897公里/小时,这一纪录 已保持了46年,那么,它什么时候会被打破呢?人类最终能以多快的速度遨游太空?

人类能否以接近光速飞行?

人类自诞生之日起, 就执着于追求更快的速 度,文学名著中也不乏这方面瑰丽而浪漫的描述, 最典型的就是中国古典名著《西游记》中"孙悟空 一个筋斗云十万八千里"的桥段。

当然, 现实生活中也充满了各种最快速度的纪 录。据媒体报道,今年7月,一辆由德国学生研发 的电动汽车的测试结果显示,从0加速到62英里/小 时仅需1.779秒,创造了全球电动汽车最快的加速度 纪录,而此前技术最先进的特斯拉 Model S从 0 加速 到60英里/小时需要2.8秒。

另据英国《每日邮报》今年6月报道,美空军 透露,他们希望在2023年前研发出5倍多音速的高 超音速飞机。这种飞机的速度高达6100公里/小 时,从伦敦到纽约不超过1小时。只不过,这种飞 机设计为非载人式,但不载人并非因为人体无法承 受如此快速的飞行,实际上,人类此前就已经以超 过5倍多音速的速度飞行过。

那么,人类的飞行速度是否存在某种极限呢? 造成这一极限的症结又是什么呢?

现有纪录已岌岌可危

目前,人类的飞行速度纪录由美国国家航空航 空局(NASA)参与"阿波罗10号"探测任务的三 位宇航员所保持。1969年,"阿波罗10号"从发射 起点抵达太空终点旅行时的速度高达39897公里/小 时。世界最大的国防工业承包商、世界级军火"巨 头"美国洛克希德·马丁公司的吉姆·布瑞说:"我认 为100年前,我们可能无法想象人类能以超过40000 公里/小时的速度行进。"

"但我们或许很快就能打破这个纪录。"布瑞 说。他是NASA"猎户座(Orion)"载人飞船乘员 舱的负责人。这种新型飞船旨在将宇航员送入低地 球轨道,它将非常有希望突破此前已保持46年之久 的人类飞行速度纪录。

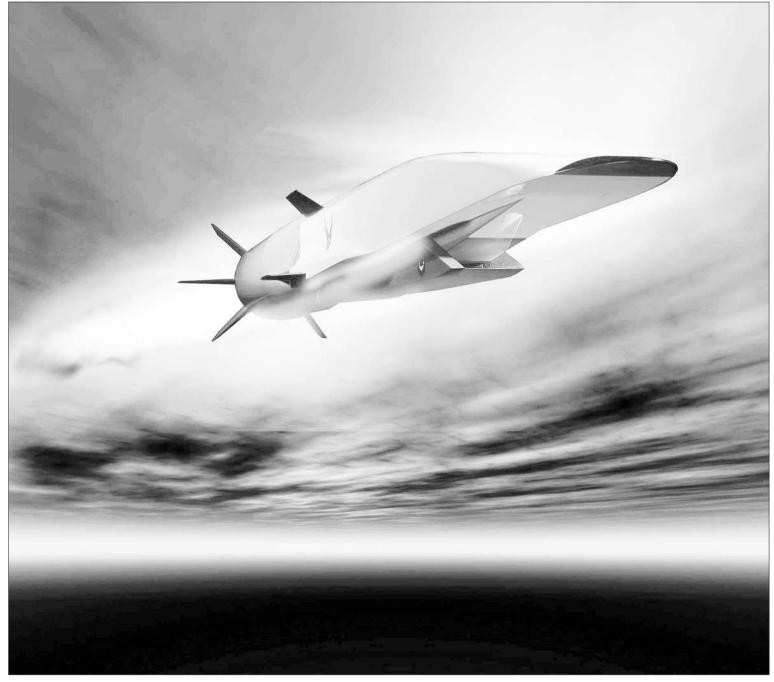
根据目前的计划, NASA 正花大气力研制的新 型运载火箭"太空发射系统(SLS)"计划于2023 年将"猎户座"飞船送往太空,届时它将搭载宇航 员访问一颗此前已被拖入月球轨道的小行星,未来 还将承担起将人送往火星的任务。

现在,设计师们估计,"猎户座"飞船的常规速 度可以达到3.2万公里/小时。不过,即便按照"猎 户座"目前的基本配置,"阿波罗10号"的速度纪 录都可能被打破。布瑞说:"这是因为,设计师们为 '猎户座'制定的'人生规划'使其可以完成多种不 同的使命,因此,它的速度还可以大大提升,可能 远远超过目前规划的速度。"

但即便是这一速度也不能代表人类遨游太空的 速度极限。布瑞解释道:"只有一件事能真正阻止人 类飞得更快,那就是光速。"光在真空中的行进速度 约为10亿公里/小时,那么,我们能否安全地填补 目前4万公里/小时的速度与光速之间的巨大鸿沟?

令人惊奇的是,这是可以做到的。因为速度—— 也就是运动的快慢,对于我们的身体本身而言并不 存在什么极限,只要我们持续不断地朝着一个方向 加速前进就行。

斯蒂芬·霍金就曾经表示,有朝一日人们有可能 制造出飞行速度接近光速的飞船, 理论上可以达到 每小时6.5亿英里,而这种飞船上的时间流逝速度则 会相对较慢,因此,人们能搭乘这种飞船造访遥远 的星系,实现梦寐以求的星际旅行梦想。


但即便我们能克服建造出超快速飞行器的诸多 技术难题, 我们主要由水组成的脆弱柔软的身体仍 将不得不面临许多与超高速行进有关的问题。另 外,如果人类通过利用现有物理学的漏洞或颠覆性 的发现而获得超光速的速度,那么,也可能会遇到 很多意想不到的危险。

人体的耐受力是瓶颈

不管如何获得超过40000公里/小时的速度,我 们都必须慢慢加速到这样的速度。对于人这种生物 来说,加速和减速过快都可能带来致命的伤害:只 要想想撞车时,车的速度在几秒钟内从数百公里/小 时下降到零给人体带来的严重伤害, 我们就会不寒 而栗。牛顿也表达过这样的概念:任何物体在不受 任何外力的时候, 总保持匀速直线运动状态或静止 状态,直到有作用在它上面的外力迫使它改变这种 状态为止。这一定律被称为牛顿第一定律,也就是 所谓的惯性定律。布瑞表示:"对于人体而言,匀速 是好事,我们要担心的不是速度,而是加速度。"

100多年前,飞机问世,尽管飞行员可以在高 速飞行中变换各种动作,但很多飞行员后来都报告 了与速度和方向改变相关的一些莫名其妙的症状, 包括短暂的视力衰退、身体变得沉重或失重等。后 来大家都知道了,造成这一现象的"幕后黑手"就 是加速度,或者直接就用多少个g来表示,一个g相 当于地球的引力施加在有质量的物体比如人体身上 的加速度,即重力加速度,约为9.8米每平方秒。

引力的方向都是垂直的,从头指向脚或相反, 对于飞行员和乘客来说,这绝对是一个坏消息。当 引力为负值时,血液从人的脚部聚集到头部,导致 头部出现肿胀的感觉 (我们倒立时也会出现这种情 况),此时,人满脸通红,眼球充血。反过来,当加 速为正值时,血液从头部蜂拥到脚部,在极端情况

美国正在开发能够以超过5倍音速飞行的超高速飞行器

目前采用绿色能源的赛车都已能达到惊人的高速

这是一台离心机,飞行员们会用这种设备测试人体能够耐受的过载极限

下,人的眼睛和大脑会缺氧,从而出现视力模糊等 症状,严重时可能会导致完全失明,这种情况在专 业上被称为"加速度引起的意识丧失(GLOC)"。

一般人大约能承受从头到脚方向5倍重力加速 度带来的影响,超出这一限度就会陷入昏迷。而受 过专业训练并穿着专业飞行抗压服的飞行员,则能 在9倍重力加速度的影响下仍然意识清楚地操控飞 行器。总部设在弗吉尼亚州的美国航空航天医学协 会的执行主管杰夫·斯文特克表示:"短时间而言, 人体能承受远超9倍重力加速度的影响,但如果持 续时间过长,就很少有人能承受得了。"

如果只持续很短时间,人体可以耐受非常强大 的加速度而不会造成严重伤害。目前的这项纪录保 持者是美国空军上尉小艾利·贝丁爵士。在1958年 的一次火箭发动机实验中,他的胸部加速度计显示 了82.6倍重力加速度的惊人数值,当时他乘坐的安 装了火箭发动机的滑轨器在0.1秒内从零加速到了55 公里/小时,这导致他当场昏迷,但清醒过来后,他 发现只是背部有些许擦伤,这是一次对于人体耐受 力的绝佳展示。

执行不同任务的宇航员都曾经受过较大的加速 度:一般在发射和返回地球大气层时,他们需要承受3 到8倍重力加速度的影响。如果加速度的方向是前胸 向后背的,此时的加速度基本无害人畜,因此我们可以 看到,在绝大部分的飞船设计中,都会将宇航员们束缚 在座椅上,使其面朝飞行方向,这当然是非常科学的设 计。而一旦飞船在轨道以2.6万公里/小时的速度巡 航,宇航员将不再感受到速度的存在,就像我们坐在高 速飞行的客机中感受不到速度的存在一样。

三方案加速太空旅行

我们对于速度的追求带来了前所未有的挑战。

有可能威胁"阿波罗10号"最快速度霸主地位的新 型飞船,仍然会采用久经考验的基于化学推进的发 动机系统, 自从人类第一次太空飞行以来, 就一直 在采用这样的系统。然而这样的设计方案在速度方 面存在着严重的限制,因为其燃料效率非常低下。

因此,为了让人类前往火星甚至更遥远太空的 飞行速度更快,科学家们意识到,他们需要另辟蹊 径,采用新的方案。布瑞说:"今天的飞行系统足以 将我们送到那里,但我们仍然希望看到推进系统出 现一场变革。"

埃里克·戴维斯是总部位于美国德州奥斯丁的 "高等研究所"的一名资深物理学家,参与了 NASA 在 1996 年到 2002 年间进行的 "突破性物理 学推进技术方案"的研究计划。这项计划提出了三 种最具有潜力的推进方案,这些方案基于传统的物 理学理论,一旦成功将可以让宇航员实现星际航 行。简而言之,这三种方案分别基于核裂变、核聚 变以及反物质湮灭。

第一种方案是核裂变,也就是分裂原子,就像 在商业核电站中发生的那样。第二种方案则是核聚 变,在核聚变反应中,核子被迫进行聚合从而产生 巨大的能量——给太阳提供能量的正是这一反应。 尽管我们心急如焚,但人类目前还未能完全掌控这

英国《新科学家》网站在2009年12月的报道中 表示,他们认为这种技术,有可能在数十年之后实 现。一旦科学家掌握了受控核聚变,那么他们将控 制反应中产生的带电粒子,并让它们从喷口喷射而 出。从核聚变反应堆喷出的粒子能使二级火箭的速 度达到光速的12%。

戴维斯则认为:"核聚变技术将在50年后变成 现实。核聚变和核裂变这样的技术非常先进, 但仍 然是基于传统的物理学法则,并且从原子时代问世 以来就已被提出,现在也已获得了广泛的证实。从 乐观的角度来看,基于核裂变和核聚变技术的推进 系统理论上或能将飞船的速度推到光速的10%左 右,也就是约1亿公里/小时。"

当然,最强大的推进方案是第三种,也就是利 用反物质的湮灭实现推进。1928年英国物理学家保 罗·狄拉克首先从理论上提出了存在反物质的假说, 认为存在和构成普通物质的基本粒子质量相等但电 荷相反的基本粒子,并有由这样的基本粒子构成的 反物质。仅仅4年后,这个假说就得到验证。

物理学原理已经阐明, 当普通物质与反物质相 遇时,将会彼此湮灭,正反物质的质量将全部转化 为能量,按照爱因斯坦的质能公式E=mc²释放巨大 的能量。就目前所知道的所有物理反应而言,这是 效率最高的,这种湮灭释放的能量巨大,是氢氧化 学反应的100亿倍、太阳核心热核反应的300倍。一 片阿司匹林那么大的反物质同物质湮灭产生的能量 足以让一艘飞船巡弋数百光年。据科学家测算,以 反物质为动力,飞行器在宇宙空间中可以光速的 70%飞行。而且,反物质发动机的好处是反物质的 湮灭可以自发产生,不需要像核发动机中的核反应 那样需要许多条件, 所以就不需要很大的反应堆, 从而减轻飞船的重量。

今天, 粒子物理学家们已经实现了对反物质的 少量制造和储存, 但要想制造出有实用意义的大量 反物质粒子仍然需要等待下一代新型设备和技术的 问世,而将其转变为实际的飞船推进技术,也将是 对人类工程学技术的极大考验。另外,如此惊人的 速度可能也会对人体产生新的威胁。

微流星体和氢原子的威胁

当飞船以数亿公里/小时的惊人速度飞行时,太的、令人难以置信的保护措施。"

空中的任何微粒, 从漫无目的游荡的氢气原子到微 流星体,都将变成可能会给飞船带来致命危险的

2012年,亚瑟·爱德斯坦和父亲、美国约翰霍 普金斯大学医学院教授威廉·爱德斯坦共同发表了 一篇论文,探究了太空中的氢原子对高速飞船可能 构成的威胁——宇宙中的氢原子可能会变成为强烈

他们解释道, 当与高速运行的飞船接触时, 氢原子会粉碎成许多亚原子粒子。这些亚原子粒 子可能会穿透飞船,对宇航员和设备造成辐射伤 害。当飞船的速度达到光速的95%左右时,这样 的辐射暴露将是致命的。另外, 高速飞行的飞船 本身也会变得越来越热,最终温度高到足以将我 们现在能想象到的任何材料融化;与此同时,宇 航员体内的水分也会沸腾,这些都会是极为棘手

在2012年的这篇论文中,爱德斯坦父子提出, 或许可以使用强大的磁场保护罩来保护飞船免受氢 原子雨的袭击。但即便采用了磁场保护罩技术,飞 船的飞行速度仍然不能超过光速的一半,否则,宇 航员会面临失去生命的问题。

推进物理学家马克·米尔斯曾经担任"突破性物 理学推进技术方案"的主管,他提醒道,爱德斯坦 父子提到的这种高速风险目前还只是杞人忧天。他 说:"根据现有物理学水平,达到光速的10%就已经 很难, 更不用说超过光速的50%了, 这简直是难于 上青天。这就好比,在我们没办法下水之前,根本 不必担心被溺毙的问题。"

除了氢气原子之外,小型太空岩石——微流星 体也会是一种威胁。这些细小的太空岩石颗粒的运 动速度可以高达30万公里/小时。为了保护飞船和 内部的乘员,"猎户座"飞船安装了厚度从18厘米 到30厘米不等的保护性外壳以及其他的保护性设 备。布瑞说:"为了保护飞船,我们必须考虑太空微 流星体所有可能来袭的角度,从而做好相应的防御

实际上,对于未来的深空探索任务来说,随 着人类的飞行速度与日俱增,这些太空微流星体 并非唯一的障碍。比如,在执行火星飞行任务 时,还有其他一些实际问题必须引起重视,包括 宇航员的食物供给、长期暴露在宇宙射线环境下 可能引发的癌症风险等。尽管在短期太空飞行 中,这些问题可以基本忽略,但在长期飞行中, 我们就不能视而不见了。

星际航行能否超越光速?

那么,未来我们能以超光速在宇宙间遨游,体 会那种大鹏一日同风起, 扶摇直上九万里的酣畅淋

尽管超光速目前还只是人们的一个幻想, 但并 非是天马行空毫无道理的想象。其中一种名为"曲 率驱动"的黑科技就给人类带来希望,这种技术最 早出现在美剧《星际迷航(Star Trek)》中,最初 只是一个不切实际的幻想,但1994年,理论物理学 家米给尔·阿库别瑞提出了以他本人的名字为名的 "阿库别瑞引擎", 使超光速航行变得可能。

阿库别瑞提出,理论上,宇宙飞船装上这种能 令前方空间收缩、令后方空间膨胀的曲速引擎后, 能创造出一种"曲速气泡",令空间扭曲,从而实 现跨星际旅行。因为移动由曲速气泡带动,身处其 中的宇宙飞船实际上并没有做出超越光速的移动, 故不会违背广义相对论"万事万物都不能超越光 速"的理论,而且,也不会出现时间变慢等相对论 效应。戴维斯表示:"如果说传统的飞行方式就像 在水中游泳,那么,阿库别瑞驱动就像是冲浪板带 着你在浪尖上冲浪一样。"

2012年, NASA 的物理学家哈罗德·怀特公布 了一个堪称惊天动地的消息: 他所领导的研究团 队正在研制这种超光速引擎。怀特表示,一旦曲 速宇宙飞船真正面世, 只需两周便能到达距离太 阳最近的恒星系南门二,南门二距离太阳约4.37 光年远。

但切莫高兴得太早,实现这项技术面临着几个 问题。首先,它将需要一种特殊的物质,其拥有 负质量,可以让时空压缩或膨胀。戴维斯表示: "物理学原理并不禁止负质量,但目前我们还尚 未发现这样的材料。"另外一个问题是, 2012 年,澳大利亚悉尼大学的研究人员发表文章指 出,在进行这样的飞行时,"曲率气泡"会不可 避免地与宇宙中的其他物质相互作用,从而聚集 大量的高能粒子,有些粒子会"偷偷潜入"气泡内 并对飞船产生致命辐射。

如此看来,因为生物学上与生俱来的脆弱性, 我们是否会被永远地困在亚光速水平上? 这个问题 的答案将不仅关乎能否创造新的飞行速度纪录,也 关乎人类这一物种能否进行星际旅行。

但米尔斯仍对超光速飞行满怀希望,他认为, 随着人类研制出越来越先进的抗加速度服以及微流 星体防护技术,人类将能以前所未有的令人惊骇的 速度,在浩渺的宇宙间遨游。他说:"如果未来的物 理学发现这种技术是可能的,那么,这种技术能让 我们以前所未有的速度飞行,也将让我们研制出新