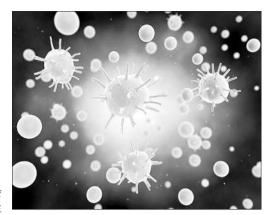
2015年7月17日 星期五

磁性纳米粒子装置可加速T细胞生成

或使免疫疗法得到广泛应用

翰·霍普金斯大学一科研团队近日发现,一种包含磁 器。"这项技术的挑战在于有效地训练T细胞,让它们 人员对aAPCs进行了"改造",使它们可以绑定在T细胞 附着在磁选柱一侧并被冲洗到液体培养基中进行生 性纳米粒子的磁选柱装置能够加速T细胞的生成,该以足够快的速度分裂,这样就可以将它们作为治疗癌表面并为之提供抗原,进而激活T细胞抗击病毒、细菌长和分裂。一周后,T细胞的数量增加了5000到初始T细胞。所以与之相比,他们的方法可以广泛应 装置或会敲开免疫疗法的大门,在医疗领域得到广泛 症患者的基本药方。"该校医学院细胞工程学教授乔纳 或肿瘤的功能,并生成更多T细胞。 应用。


科技日报北京7月16日电(记者**刘园园**)美国约 并使其快速繁殖,因为这种细胞是对抗癌症的有效武 用,等待T细胞发出对人侵者进行攻击的信号。研究 血浆从磁选柱中流过。与磁化aAPCs结合的T细胞会

击癌症和感染的治疗方法。据物理学家组织网报道, 提呈细胞(aAPCs)非常有潜力激活人体内的T细胞。体。研究人员将磁场作为从血液中分离T细胞的途 细胞——肿瘤浸润淋巴细胞。施耐克表示,并不是所 病,如艾滋病。他透露,如果测试顺利,一年半以内该

该技术的最终目标是,在病人的血液样本中训练T 细胞实行免疫疗法。 研究人员发现,一种人工免疫细胞——人工抗原 细胞并增加它们的数量,最后将它们放回病人的身

10000倍——这一增长速度足以支持利用病人自己的 用到更多病人身上。

该团队的研究重点是训练一种叫做T细胞的免疫细胞 要做到这一点,aAPCs必须与体内初始T细胞相互作 径。他们先将样本血浆与磁化的aAPCs混合,然后让 有病人都拥有肿瘤浸润淋巴细胞,但每个人体内都有 技术将进人临床试验阶段。

目前,该科研团队仅将这种方法应用于抗击癌细 另一种正在测试阶段的免疫疗法使用了其他免疫 胞。施耐克认为此法也有潜力应用于治疗慢性传染

科技日报北京7月16日电(记者王

小龙)如果你既喜欢烧饼也喜欢腊汁肉, 把两种食材结合起来,来一份肉夹馍,口 感或许更胜一筹。材料学也是如此。日 前,一个国际联合研究小组将两种热门的 太阳能电池材料结合在了一起,制造出一 种超高效发光晶体,为LED技术开创了 新的研究平台。相关论文发表在7月15 日出版的《自然》杂志上。

在这项研究中,该研究小组将一种纳 米发光胶体即一种量子点嵌入到钙钛矿 中,形成了一种独特的混合晶体。钙钛矿 材料可以通过溶解的方法来生产,允许电 子在最小损耗的情况下快速移动,而量子 点则能高效发光。两者强强结合,互利互 补,实现了效率的最大化。

论文第一作者、加拿大多伦多大学博 士生龚希文(音译)说:"将两种当红的光 电材料结合在一起是非常新颖的想法。 我们希望能通过固态基质将它们无缝结 合起来,以发挥它们各自的长处。"

"当你试图将两种晶体混合起来的时 候,开始往往不会很顺利,"参与此项研究 的多伦多大学博士后理查德·卡明说,"我 们必须找到一个新的策略,让它们'忘记' 分歧,形成独特的混合晶体结构。"

要做到这一点,他们必须让两种晶 体结构按照名为"异质外延"的方式进行 生长。该团队设计出了一种方法,能让 两种晶体结构在原子末端相连,从而保 证它们能够顺利对齐,实现无缺陷的无 缝结合。论文合著者、上海科技大学的 宁志军(音译)说,先在量子点周围构建 纳米"脚手架"外壳,然后让钙钛矿沿着 "脚手架"生长,两种材料果然完美地结

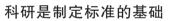
最后,研究人员得到一个漂亮的黑色 晶体,量子点被包裹在钙钛矿"蜂巢"中 间,这些钙钛矿材料能像漏斗一样将电子导入电子点,

让其发光效率成倍提升。这种方式还避免了材料光谱 重合可能导致的自吸收现象。

研究人员称,这种超高效率 LED 技术,不但能用来 照明、制造显示器和夜视仪,还能用来制造能识别手势 的近场红外线发射装置和低成本薄膜太阳能电池,具有 极为广泛的应用价值。

■今日视点

GUO JI XIN WEN


走访美国国家标准与技术研究所

本报驻美国记者 田学科

与秦始皇统一度量衡相比,美国开始研究和使用 国家统一计量标准的时间要晚2000多年。上世纪初, 鉴于规范国内市场交易的需要,特别是解决与欧洲贸 易存在的越来越多的计量问题,美国国会通过立法, 成立了国家标准局,即国家标准与技术研究所(NIST) 前身,1988年后改称NIST,隶属商务部。

100多年来,NIST在工业、农业、交通运输和贸易 等诸多领域,研究和制定了一系列标准,逐步统一了 计量和规范,有效地促进了经济发展,解决了过去因 标准不一给工业生产、交通运输和救灾等造成的安全 隐患和效率低下问题。

尽管 NIST 的工作与美国人日常生活息息相关, 并发挥着非常重要的作用,但它一直鲜为人知,对普 通美国人来说,没有多少人知道NIST具体是干什么 的,这无疑给NIST蒙上了一层神秘的面纱。带着好 奇,科技日报记者不久前走访了NIST位于马里兰州

一走进 NIST 行政大楼的大门即是陈列室,这里 记载着 NIST 的成就和重大历史事件。"这位是 1997年 诺贝尔物理学奖获得者威廉·菲利普斯。"NIST新闻 部主任维尔戈女士的话引起了我的好奇:一个政府机 构怎么会有能够获得诺贝尔奖的科研人员? 经其介 绍才明白, NIST事实上也是科研实力非常雄厚的公 经产生了4位诺贝尔物理学奖获得者。

菲利普斯告诉记者,制定和执行标准必须有坚实 的科研作保障。1988年美国国家标准局改为NIST 后,办公机构从华盛顿市区迁到了现址。在这片远离 市区、与外界隔离(不对公众开放)、面积达578英亩的

本报记者 田学科摄

大林子里,生活着200多头野鹿,NIST的行政部门和 最重要的四大类实验室及两大研究中心均集聚于 样本来自交通事故、刑事案件及医学遗传鉴定等。"实 此。另外,NIST在科罗拉多州的博尔德设有分部和 验室生物学家罗莫索斯介绍说,尽管仪器先进,检测 立研究机构,在材料、工程和物理计量等研究领域,已 实验室,还与世界其他国家的相关实验室有着密切合 速度加快了很多,但还是满足不了社会需要。

做好与标准相关技术服务

在生物材料检测实验室,记者看到测试人员正在 房屋的40%,而这样的房屋还在源源不断地建造之 市场竞争力。

据其介绍,NIST生物研究中心为各类司法鉴定 实验室创建和提供了标准参照物,引导实验室间的研

究规范,使犯罪研究实验室的司法鉴定更加统一 目前,保持传统构造的独立房屋约占全美居住类

中。为解决这类外立面较大的木质房屋的的节能问 题, NIST的研究人员正在进行"零耗能住宅试验"研 究,为建材生产和房屋结构设计提供标准。

据负责此项研究的工程实验室科学家范尼介绍, 此类住宅能耗点主要是墙壁、门窗、热水供应和空调 系统等,为此需要对各种高效和可替代能源系统、材 料以及设计布局进行研究和试验。他告诉记者,经过 一年多的试验和调试,他们在保持传统居住习俗的前 提下,已经在利用新能源和节能系统改造方面取得了 明显成效。

针对新技术制定新标准

在面临重大技术变革的今天,新技术、新产品不 断涌现,为新技术及其应用制定相应的技术标准正是 NIST的重要任务之一。在NIST纳米科技中心,记者 看到在十多个洁净、恒温的实验室里研究人员正在忙 碌地工作着。据中心主任塞劳塔介绍,该中心兼备检 测、研究和培训等多项职能,拥有的净化室面积达 1800平方米,可以提供100多个最为先进的商用(检

面对纳米技术的迅速发展和纳米材料的广泛应 用,NIST的纳米科技中心肩负着两大职责:一是向需 求者(特别是工业用户)提供使用最先进的商用纳米 级别检测和制备设备;二是在纳米科技中心多学科研 究人员的帮助下,帮助用户了解下一代纳米技术测定 和制备方法的设计工具和流程。

NIST 标准协调办公室主任吉尔曼指出,目前 NIST与许多国家保持着密切合作,共同研究解决新 技术发展和应用带来的一系列标准问题,为美国企业 提供与之关联的标准工具和信息,帮助它们提高全球 (科技日报华盛顿7月15日电)

可送高剂量药物直达病灶

学家研发出能安全运送高剂量抗癌药物直接抵达癌细 物的纳米圆球。 胞的纳米运输系统,可大幅提高癌症治疗效果。

校官网报道,正是利用了这种酶的分解特性,该校化 性状态。 学和生物化学教授内森·詹内斯基领导的研究团队,

科技日报北京7月16日电(记者李文龙)美国科 发明了一种能在基质金属蛋白酶存在情况下释放药 者仅用较低剂量药物就使肿瘤在至少两周的时间内停

研究人员将抗癌药物装入纳米圆球,并用多肽包 到足以致死。 多种癌细胞会大量生成能分解细胞外基质组分 裹。药物分子中的一些原子对药物的效果和毒性至关 导致机体死亡。据美国加利福尼亚大学圣地亚哥分 质,可以使药物在通过循环系统到达肿瘤之前保持非活

属蛋白酶能在分解多肽外壳后释放出药物,同时,被分

研究团队成员卡桑德拉·考尔曼说:"我们制造的是 一种纳米级运输器,它能将有效剂量的抗癌药物准确送 到肿瘤部位。"

通过对老鼠的实验研究发现,利用这套系统能安全 地给患者施加比常规疗法所用剂量高16倍的药物,或 止生长。而用生理盐水处理的老鼠体内的肿瘤均生长

这种以特异药物运输系统为基础的治疗技术正在 的基质金属蛋白酶。该酶能够促进癌细胞扩散,进而 重要,在纳米球内添加能与上述原子紧密结合的化学物 申请专利。詹内斯基表示,他们将拓展技术方法,以创 造用于其他疾病诊断和治疗的分子运输系统;他们也会 继续完善包裹纳米圆球的外壳,使其提供更强大的保 护,避免纳米球被肝脏、脾和肾等器官吸收。

■环球短讯

科学家找到太阳系疑似"孪生姐妹"

新华社柏林7月15日电(记者郭洋)欧洲南方 天文台15日说,天文学家发现一颗类似木星的行星 论是质量、年龄还是物质成分均与太阳相似。 围绕一颗类似太阳的恒星运转,它们所在的星系可 能与我们所在的太阳系相似。

于智利的望远镜观测发现,鲸鱼星座中有一颗与木 新发 现 的 类 似 木 星 的 行 星 及 恒 星 HIP11915 所 星相似的行星,这颗行星不仅与木星质量相当,而且 在的星系或许像太阳系的"孪生姐妹"一般,距 与其恒星HIP11915的距离也几乎同木星和太阳之 离这颗恒星更近的地方可能存在类似地球的

此外,恒星HIP11915似乎是太阳的"翻版",无

木星是太阳系中质量最大的行星。根据现 有理论,与木星质量相当的行星在整个行星系 一个国际天文学家小组利用欧洲南方天文台位 的形成过程中扮演重要角色。天文学家推测,

新型激光感应装置解决血糖监测难题

糖尿病病人监测血糖的难题。该设备利用低能量激 30秒。 光技术实现对血糖值的便捷检测,免去了血液检测

制病情,目前常用的做法是通过在指头上扎针获取 去繁琐的血液检测程序,有助节省医疗资源。 血液样本来检测,这不但耗费时间,效率不高,对病 人来说也是比较痛苦的事情。

低能量激光感测技术,设计了一种新型的血糖监 直接。

新华社伦敦7月15日电(记者张家伟)英国利 测装置,病患只需将手指放在装置上扫描一遍, 兹大学研究人员目前开发的一种新型设备有望解决 就能及时获知自己的血糖值,整个过程只需不到

领导这个团队的金·何塞说,他们使用的光学部 件与智能手机上的非常相似,这保证了装置的低成 糖尿病病人需要不断监控自身的血糖值,以控 本,更便于未来推广。此外,这种技术普及后就能省

据研究人员介绍,随着技术的成熟,他们未来还 可以将这一装置进一步缩小,做成可穿戴设备,病人 据英国媒体报道,利兹大学的研究团队利用 佩戴之后就可以随时随地获知自己的血糖值,简单

欧洲阿丽亚娜火箭成功发射两颗卫星

新华社巴黎7月15日电 (记者张雪飞)法国巴 48个Ku波段转发器。这颗卫星将被定位于西经70 天中心升空,将一颗通信卫星和一颗气象卫星送入 工作寿命15年。 太空轨道。这是阿丽亚娜5型火箭今年第三次成 功发射。

枚火箭载有巴西运营商的Star One C4通信卫星和 前3颗分别于2002年、2005年和2012年发射入轨。 欧洲气象卫星应用组织的MSG-4气象卫星。这两 箭分离。

星由美国劳拉空间系统公司建造,重约5.6吨,携带 预报和气候科研发挥重要作用。

黎时间 15日 23时 42分(北京时间 16日 5时 42分), 度位置,用于向巴西、南美洲西部、墨西哥、中美洲及 一枚阿丽亚娜5型运载火箭从法属圭亚那库鲁航 美国大陆部分地区提供电话、电视和网络信号,预期

MSG-4卫星重约2吨,由法国和意大利的泰雷 兹阿莱尼亚宇航公司制造,属于欧洲气象卫星应用 据负责发射的欧洲阿丽亚娜航天公司介绍,这 组织的第二代气象卫星中的第四颗也是最后一颗,

MSG-4卫星将在10天后进入距地球表面约 颗卫星分别在升空约28分钟和40分钟后成功与火 3.6万公里的地球同步轨道,预期工作寿命为7年。 MSG系列卫星能保证每隔15分钟提供一次欧洲和 Star One C4是阿丽亚娜公司为巴西通信卫星 非洲地区的全景圆盘气象图、每5分钟提供一次欧洲 运营商 Embratel Star One 发射的第十颗卫星,该卫 地区气象快速扫描图,同时还将对极端天气的临近

7月16日,健身气功爱好者在比利时首都布鲁塞尔参加大型气功展演。本次展演是由中国驻欧盟使团、国家体育总局健身气功管理中心和比利时健身气功协会 共同主办的中欧建交四十周年健身气功周的重要组成部分。数十名当地健身气功爱好者参加了这次展演,吸引了不少路人驻足观看