乙未年正月十五 总第10206期 国内统一刊号 CN11-0078 代号 1-97

http://www.stdaily.com

2015年3月5日

星期四

今日 12 版

长征七号运载火箭完成发射场合练 首次采用数字化模拟技术

■代表委员晒新闻

航天科技集团中国运载火箭技术研究院党委 大,各种机械接口、电器接口非常多,但因为 书记梁小虹委员4日向科技日报记者透露, 提前对合练进行了数字化模拟,现场合练中 长征七号运载火箭于去年年底进入海南文昌 没有出现任何问题。"他说。 卫星发射中心,今年春节前完成了发射场合 练。凭借首次采用的数字化模拟技术,整个 合练过程顺利完成,没有出现任何问题。

梁小虹介绍,发射场合练指火箭与发射 场的全面对接。其间长征七号火箭经受了一设计生产达到更先进的水平。

海运及发射场自然环境条件的考核,并首次 与有效载荷的接口匹配,首次与全模块垂直 练目前正在进行中。 科技日报北京3月4日电(记者付毅飞) 总装、新型活动发射平台匹配。"尽管系统庞

全面采用了全三维数字技术,是我国首枚 "数字化"火箭。梁小虹说,过去是对着图纸 干,首次实现全系统数字化,使我国火箭的 同时他透露,长征五号的数字化模拟合

长征七号火箭是我国新一代中型两级 液体捆绑式运载火箭,采用无毒、无污染的 液氧/煤油推进剂,具备近地轨道13.5吨、 700千米太阳同步轨道5.5吨的运载能力,主 除了合练,长征七号火箭从设计到生产 要用于发射近地轨道或太阳同步轨道有效 载荷,将承担载人航天货运飞船等发射任 务。目前该火箭已完成动力系统试车、助推 分离试验、结构静力试验等268项大型地面 试验,预计将于2016年首飞。

习近平在看望参加政协会议的民革台盟台联委员时强调 民族振兴人民幸福是两岸同胞共同追求

主席、中央军委主席习近平3月4日下午看望了参加 全国政协十二届三次会议的民革、台盟、台联委员, 并参加联组会,听取委员们意见和建议。他强调,两 岸关系和平发展是一条维护两岸和平、促进共同发 展、造福两岸同胞的正确道路,也是通向和平统一的 光明大道,我们应该坚定不移走和平发展道路,坚定 不移坚持共同政治基础,坚定不移为两岸同胞谋福 祉,坚定不移携手实现民族复兴。

联组会上,郑建邦、杨健、温雪琼、纪斌、李霭君、 骆沙鸣、郑广台、刘家强、胡有清、冯巩、傅惠民等11 位委员,围绕推动两岸关系和平发展、促进两岸一家 亲理念深入人心、深化两岸交流合作、加强两岸青少 年交流、推动经济社会持续健康发展、推进两岸文化

习近平在认真听取大家发言后发表了重要讲话 他首先表示,民革、台盟作为中国共产党的亲密友党, 台联作为台湾同胞的爱国民众团体,长期以来为推动 两岸关系发展做了大量工作。大家在发言中提出了一 些很好的意见和建议,有关部门要高度重视、认真研 究。他代表中共中央,向大家表达诚挚的问候。

习近平指出,2014年是我国发展进程中很不寻常 (下转第三版)

右图 习近平看望全国政协十二届三次会议的 民革台盟台联委员并发表重要讲话。

□李克强在参加经济、农业界

委员联组会时指出,要加快农业

现代化步伐,创新农业经营体

系,走绿色、安全、高效的发展之

路,使农业更强、农民更富、农村

□ 张 德 江 在 参 加 港 澳 地 区 全

国政协委员联组会时指出,要确

保"一国两制"事业始终沿着正

确轨道前进,必须全面准确理解 "一国两制"方针,维护宪法和基

□俞正声在参加宗教界委员 小组会时指出,把法治宣传教育

推进到宗教团体、宗教场所、宗

教院校中,把法治精神融入到讲

经讲道中,在法治轨道上推动宗

□刘云山在参加总工会、福利

保障界委员联组会时指出,要始

终带着对群众的深厚感情履职尽

责,多办利民惠民的好事实事,尤

其要关心困难职工、低收入群体、

残障群体,做好就业再就业、社会

□王岐山在参加民建、无党派

委员联组会时指出,希望广大政 协委员认真履职,建言献策,强

化民主监督,为推进党风廉政建

科技体制改革,大力增强自主创

新能力,持续推动科技和经济社

会发展深度融合,切实加强科技

创新人才队伍建设,深入开展科

□十二届全国人大三次会议

学普及工作

举行预备会议

□张高丽在参加科协、科技界 委员联组会时指出,要全面深化

保障、职工权益保护等工作

设和反腐败斗争贡献力量

■两会进行时

更美

本法的权威

教事业健康发展

新华社记者 鞠鹏摄

李毅中委员:谋划工业4.0,还得补欠账

"德国制造业雄厚,提出了工业4.0,在第三次工 世界上最先进的行业和领域,像航天、高铁、核电等, 能源、资源、土地、人才等要素的非正常转移,使得效 政协分组讨论中,全国政协委员、全国政协财经委员 工作业的小矿山、小作坊等等。" 会副主任李毅中的问题一抛出,便引来了在场记者

李毅中表示:"我们正处在工业化的中后期,整体 上看,我国仍处于全球价值链的中低端,尽管我国有

业革命中先声夺人,我们怎么办呢?"在4日上午的 但同时在某些领域还十分落后,比如还有完全依赖人 益低下。

他补充道:"由于受到西方经济的影响,加上我们 自身机制的缺陷,我们的工业一度出现了'脱实向虚' 的危险倾向,资本游离,不再向实体经济投入,甚至连

"所以,我们在谋划工业4.0的同时,还要全力打 造3.0,甚至不得不去补2.0的欠账。某些行业的机械 化程度还不够,就全国来讲,整体质量还存在很多问 题,这都是工业2.0要解决的问题。"他说。

(科技日报北京3月4日电)

■两 会 速 递

科技日报北京3月4日电(记者付 飞)航天科技集团中国运载火箭技术 研究院党委书记梁小虹委员4日向科技 日报记者透露,目前国家国防科工局已 拨,对关键技术也已开始深入研究。"他 说,"一旦立项,我们将力争快速取得突

中国航天科技集团公司董事长雷风 培此前曾透露,我国正加快实施重型火 箭关键技术的预先研究,力争用4到5年 时间突破重型火箭总体设计,以及460吨 液氧煤油发动机、220吨氢氧发动机和9 米左右直径火箭箭体结构设计制造等关 键技术;用15年左右时间完成重型火箭

梁小虹介绍,我国于2011年提出研 起飞质量约1040吨,而未来重型火箭则

"研制重型火箭的目的不仅是为了 说,"人类空间活动的拓展,会不断将更 大的有效载荷送入太空。"发达国家也在 不断发展大推力火箭,如美国总统奥巴 马此前宣布,美国将于2017年发射运载 能力达70吨的火箭,2030年将有推力更 大的火箭首飞。

梁小虹认为,航天科技发展必须着 眼于未来。他说,早在1986年国内就有 专家提出研制运载能力20吨的火箭,但 有人问:要这么大的火箭干什么?没人 能答出来。经过20年反复讨论,大型火 箭直到2006年才开始立项。"研究重型火 箭时也遇到了这个问题,到底要它干什 么?这个问题如果能说清楚,说明只是 眼前的问题,不是长远目标。"他说,"搞

航天就要瞄准未来10年、20年甚至30年。30年后我们 要干什么谁也说不清楚,但今天我们必须未雨绸缪,提 前去研究。"

梁小虹介绍,重型火箭研制将继续遵照总体牵引、 动力先行方针。他说,过去的火箭研制虽然也有类似 提法,但动力在某种程度上不受总体条件约束,后果是 如果计划的推力达不到,将导致各个系统超重。而在 重型火箭研制中,各系统要在总体优化的前提下开展 关键技术研究。

他同时表示,重型火箭不会是长征五号、七号等火 箭的放大版,而将在科技管理、技术攻关、研制流程、数 字化设计等方面取得全新突破。

别让国家实验室 "筹"莫展

本报记者 刘晓莹

■两 会 视 点

全国政协常委、清华大学化学系教授王梅祥与 报的专访。

"问题究竟出在哪儿?"

"第二只靴子"何时落下

国家实验室有着深厚的感情。从我国开始酝酿筹 实验室建设,"最早先成立了沈阳材料科学国家(联合) 院士告诉科技日报记者。然而,这个当初"让很多科研 建国家实验室时起,他就积极参与论证工作。回想 实验室"。紧接着,2003年科技部批准第一批共计5个 工作者感到振奋人心"的决定却并没有交出一个令人 起当初参与研讨国家实验室的定位、发展目标、如 国家实验室并开始筹建。提起这些国家实验室,王梅 满意的"答卷"。他打了一个比喻:"就好比第一只靴子 何来做、怎么来选择等问题,仍历历在目。而今,满 祥如数家珍:"有北京凝聚态物理国家实验室(筹)、北 已经掉下来半天了,第二只靴子何时落下?" 腔的热情期盼却等来一个尴尬的结果:自第一批国 京分子科学国家实验室(筹)、武汉光电国家实验室 家实验室筹建至今已经过去十多年,国家实验室却 (筹)、清华信息科学与技术国家实验室(筹)、还有合肥 验室进行了专家验收,对2003年试点建设的第一批其他5 界得到了普遍认同。"这也是 至今"筹"字难除。一听说要聊聊国家实验室的建 微尺度物质科学国家实验室(筹)。"到2006年12月5 个国家实验室迟迟未开展验收工作,且对2006年提出的 我们对国家实验室的定位。' 设问题,很少与媒体打交道的他欣然接受了科技日 日,科技部召开国家实验室建设工作通气会,决定扩大 第二批筹建的10个国家实验室计划再未提及。"李灿说。 国家实验室试点,启动海洋、航空航天、人口与健康、核 王梅祥和广大科研人员一样,一直对此很困惑: 能、洁净能源、先进制造、量子调控、蛋白质研究、农业 击科研人员的积极性。"实验室还没走上正轨,无法得 和轨道交通10个重要方向的国家实验室筹建工作。

"建设国家实验室绝不是'拍脑袋'的决定,它经历 灿说,"实验室不能只是停留在筹建阶段,而应该尽快 了十分慎重和严肃的论证。"一直关注国家实验室建设 启动,做起来。如果一直这么拖下去,不仅会影响到科 据王梅祥介绍,我国从2000年以后开始酝酿国家的全国政协委员、催化基础国家重点实验室主任李灿 技创新,也会影响到国家、政府的公信力。"

迟迟不能验收,在李灿和王梅祥看来,多少有些打 到稳定的财政支持,就连吸引人才时都底气不足。"李

筹建之后别再"愁"建

建设出"有一定规模的、综合性的、能够解决基 础科学的核心与交叉问题,同时又能为我国国民经 "过去的十余年间,主管部门仅对试点的1个国家实 济发展提供科技支撑的国家实验室"的愿望在学术

王梅祥说。 (下转第二版)

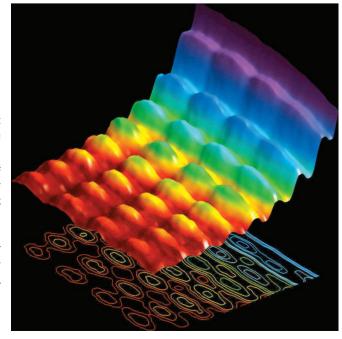
▶扫一扫,看世 界著名国家实验室

波粒二象性,有图有真相

科技日报讯 (记者常丽君 刘霞)量子力学告诉我们,光同时具 源,向纳米线的周围辐射。 有粒子性和波性,但我们看到的要么是波,要么是粒子。在爱因斯坦

(EPFL)的科学家成功拍摄出有史以来第一张光同时表现出波粒二象 位置,就能使驻波变得可见,就像光的波性指纹。 性的照片。这一突破性成果发表在最近的《自然·通讯》杂志上。

此解释为入射光的"光电"效应,被认为只是一种波,也是一束粒子 影响它们的速度,让它们的速度更快或更慢。这种速度的变化显示 流。EPFL的一个由法布里奥·卡彭领导的研究小组进行了一次"聪明 了电子和光子之间的能量"包"(量子)的交换,正是这些能量包的出 的"反向实验:用电子来给光拍照,终于捕获了有史以来第一张光既 现,显示了纳米线上的光的粒子性。 像波,同时又像粒子流的照片。


线。激光给纳米线上的带电粒子增加了能量,使它们振动起来。 它能把基础科学拓展到未来技术上。"能在纳米尺度拍摄并控制类似 光沿着这条微细纳米线以两个可能的方向传播,就像高速路上的 这种量子现象,也为量子计算机开辟了新途径。" 车辆。当波以相反的方向传播,互相碰在一起时,就会形成一种 新的波,看起来像停驻在那里。在此,这种驻波成为实验中的光 既像波,同时又像粒子流的照片。

实验中所用的技巧在于,研究人员发射了一束电子接近纳米线, 时代,科学家就一直在努力,设法同时、直接看到光这两方面的性质。 用这束电子来给停驻的光波拍照,当电子和驻波在纳米线上相互作 据物理学家组织网3月2日报道,最近,瑞士洛桑联邦理工学院 用时,它们要么加快,要么减慢。用超快显微镜拍摄这一速度改变的

而这种现象不仅能显示出光的波状特性,同时也显示了粒子特 当紫外光照在金属表面时,会造成一种电子发射。爱因斯坦将 性。当电子接近光驻波时,它们会"撞击"光粒子,也就是光子,这会

"这项实验第一次证明了我们能直接拍摄量子力学现象及其矛 实验设置大致为:发出一束激光脉冲照射微细的金属纳米 盾的性质。"法布里奥·卡彭说。此外,这项开创性研究的重要性在于

右图 瑞士洛桑联邦理工学院科学家拍摄的有史以来第一张光

□十二届全国人大三次会议 主席团举行第一次会议

□十二届全国人大常委会举 行第四十四次委员长会议

(均据新华社)