寻找"另一个世界"的途径

-人类发现系外行星的7种主要技术手段

本报记者 张梦然 综合外电

自从1992年第一颗围绕恒星运转的系外行星被发现 后,天文学家们已陆续确认了超过800个地球的"同类"。 那么,他们是如何取得这些成果的呢?现有的技术手段 可谓各有利弊,美国太空网日前专门针对科学家找寻系 外行星时主要采用的7种技术方法,逐一予以解读。

方法一:天体测量学

天体测量学,主要通过精密追踪一颗恒星在天空中 运行轨迹的变化,来确定受其引力拖曳的行星所在。这 与径向速度法的原理很类似,只不过天体测量学并不涉 及恒星光芒中的多普勒频移。

天体测量学可不是从1992年才开始为人所用的。 它其实是搜寻系外行星最古老,并且起初也是最常用的 方法——早期都是以肉眼和手写来记录的。但在近几 十年历史中,科学家们在应用该方法发现行星的过程中 取得的成果寥寥,且常富于争议。2010年10月发现的 HD 176051b,是目前唯一一颗已经确认的、借由天体测 量方法发现的系外行星。

不过,即将于2013年10月发射升空的欧洲空间局 (ESO)"盖亚"项目(Gaia,即第二个天体测量卫星),或许 可以令这种古老的方式告别自己寒酸的过往。该卫星 将在5年任务期间将测绘银河系之内以及附近区域的 10亿颗恒星,确定它们的亮度、光谱特征以及三维位置 和运动情况。除此之外,三维星图还将帮助人们揭开银 河系组分、起源与演化的秘密。

而据研究人员估计,"新"的天体测量学有望帮助他 们找到数万颗新的系外行星。

方法二:利用狭义相对论

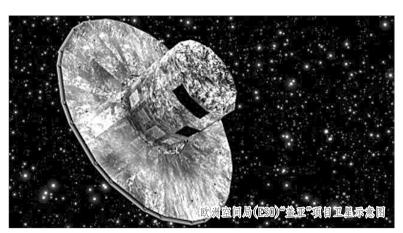
这是人类宇宙探索"技术库"里增添的一个新手 段。作为新的研究方法,它指导天文学家们去关注恒星 的亮度因行星运动而发生的变化——后者的引力作用 引发相对论效应,导致组成光的光子以能量的形式"堆 积",并集中于恒星运动的方向。

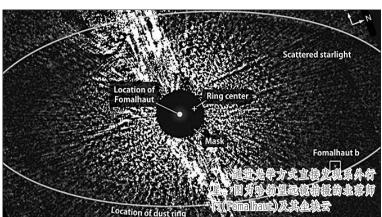
其实,运用该方法来寻找行星,在理论上提出已逾 10年。但直到最近,开普勒-76b(Kepler-76b)行星的发 现,才算正式应用了这种方法。开普勒-76b是距离地球 2000光年外天鹅座一颗质量大约是木星两倍的太阳系 外行星,作为第一颗应用爱因斯坦的狭义相对论发现的 系外行星,它得到一个别名:"爱因斯坦的行星",这也使 它变得声名远扬。

这一成果的真实性,随后已被径向速度法所证实。 与其他已有的行星定位方法相比,"狭义相对论"法既有 着自己的优势也存在一些不足,但它让人们相信,随着 科学家对这一理论掌握得日臻成熟,会有更多此类发现 不断出现。

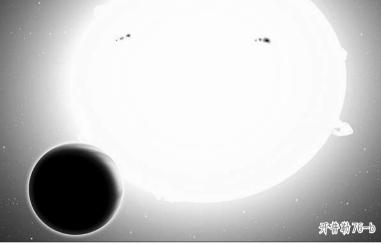
方法三:脉冲星计时法

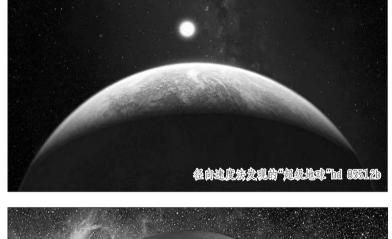
这种方法特别适用于发现围绕脉冲星运动的行 星。所谓脉冲星,是由恒星衰亡后的残余形成的密度 极高的星体。它在高速自转的同时,会发射出强烈脉 冲——且由于一颗脉冲星的自转本质上是非常稳定的, 所以这种辐射因为自转而非常规律。


脉冲星计时法最初并不是设计来检测行星的,但是 因为它的灵敏度很高,所以能比其他方法能检测到更小 的行星——但即使是最下限也要相当于地球质量的10 倍。于是,人们开始借由在脉冲的电波辐射上观察到的 时间异常,尝试追踪脉冲星的运动。换句话说,脉冲星 具有的奇特秉性,让科学家们可以通过寻找脉冲星本应 规律脉冲中的不规律现象,来发现行星的踪迹。


而在1992年,脉冲星计时法就帮助人类建立了一个 里程碑——亚历山大·沃尔兹森和戴尔·弗雷使用这种 方法发现了环绕着 PSR 1257+12的行星。随后他们的 发现很快就获得证实,现普遍认为,这就是人类在太阳 系之外第一次确认发现的行星。

方法四:直接成像法


这种方法最大的特点,叫"不言自明"——用不着什 么复杂的演算,只需使用功能强大的望远镜,直接给距 离遥远的行星拍摄个"证件照",一并还能取得其"行星 信息。


直接成像原则上就是观察系外行星的最重要方式, 组曾指出,所有人类迄今已在太阳系外至少确认的行星 能在观测中有效屏蔽掉附近恒星母星的耀眼光芒,从而 几个地区的望远镜阵列。

但该方法要求行星的自身尺寸要足够巨大,与母恒星的中,能直接确认其形态的还不到10颗,其中更多数都是 护照"——上面包含了这颗行星光度、温度、大气和轨道 距离还不能近到被其光芒所掩盖。这实际上也是对技 推测出来的。 术的巨大挑战,实现非常不易。日本国立天文台研究小

保证"主角"形象的清晰。目前,掌握直接成像法的几位 过恒星前方造成亮度下降的凌日法得以发现的。它被 著名"摄影师"有:美国国家航空航天局的哈勃望远镜、 因而,也只有足够强大的望远镜装配的日冕仪,才 夏威夷的凯克天文台以及欧洲南方天文台位于智利等

凌日法发现的开音勒-62F

方法五:重力微透镜法

重力微透镜法,是指科学家们从地球上观察巨大星 体路经一颗恒星正面时发生的现象,进而寻找行星的方 法。这是唯一有能力在普通的主序星周围检测出质量 类似地球大小行星的方法。

该方法的原理在于,当这种现象发生时,附近星体 的重力场会发生弯曲,并会如透镜一样放大目标恒星发 出的光。由此便会产生一个光变曲线,即遥远恒星的光 线随时间由亮渐衰。这一过程能够告诉天文学家们关 于目标恒星的许多信息——如果该恒星拥有行星卫星, 那么将会产生二级光变曲线。因而,一旦发现了二级光 曲线,就可以证明行星的存在。

科学家第一次提出利用重力微透镜寻找系外行星 的方法是在1991年,不过直到2002年,波兰的天文学家 在光学重力透镜实验中发展出可行的方法后,其才获得 成功。随后重力微透镜法开始为人类贡献出由它发现 的行星。而这种方法在观察地球与银河中心之间的恒 星时,最有可能获得成效,因为银河中心可以提供大量

该方法自然也有它的缺陷——只有当两颗恒星几 乎完全对齐时,才会产生这种效果。而恒星对齐的情况 永远不会再次发生,因此这种方法不能重复。不过,与 径向测速法等方法相比,重力微透镜法并不局限于发现 轨道距离母星较远的行星,科学家们甚至可以使用它去 寻找所谓的"游侠行星",即那些没有归依、自由流浪于 宇宙深处的行星。

方法六:径向速度法

这是到目前为止最具有成效的确认行星的方法。 径向速度法找寻的线索,是恒星母星相对地球发生 远近运动时,卫星行星受其影响所产生的微小波动。变 化虽然小,但使用现代的光谱仪已可以检测出低至1米/ 秒的速度变化。这种方法通常也叫做"多普勒效应法", 因为它测量的,就是恒星的光受引力拖曳而产生的变化。

这种方法的成功与否从原理上讲与行星的距离无 关,但由于需要高精度的高信噪比,因此通常适用于搜 罗我们地球附近那些距离不超过160光年的恒星。而它 的一个主要缺点,是不像其他方法那样在发现的同时展 示出行星的"身份信息"——该方法只能估计行星的最 低质量,其通常只是真实质量的20%左右。

另外,仅仅有径向速度法这一理论武器显然是不够 的,科学家还需要利用到智利拉西拉天文台(隶属欧洲南 方天文台)3.6米望远镜安装的高精度径向速度行星搜索 器(HARPS),或是位于夏威夷的凯克天文台高分辨率阶 梯光栅光谱仪(HIRES),再或是和前两者一样拥有非常 复杂名字、却能代表目前最先进技术的天文设备们。时 至今日,它们已帮助科学家发现了诸多系外行星。

方法七:凌日法

凌日法的基本原理,是观察恒星亮度在有行星横穿 或路经其表面时发生的细微变化。它的好处是可以从 光变曲线测定行星的大小。

这种现象只有在行星的轨道与观测的天文学家的 观测点对齐时才能观测到,机会其实并不大。只不过当 技术手段若能同时扫描成千上万乃至数十万颗恒星时, 在如此大面积范围内,发生该现象的系外行星数量,理 论上应该会超过径向速度法所得。

而如果一个由径向速度法发现的没有完整质量信 息的行星,再用凌日法来加以佐证,那么天文学家就可 以利用这种结合来评断行星的真实质量和密度,进而对 行星的物理结构有更多的了解。但凌日法也并非占尽 优势,这种检测方法的虚假率其实也很高,由凌日法所 检测出来的"待定行星",还通常需要通过径向速度法来

美国航空航天局(NASA)的开普勒探测器自2009 年3月升空以来,已经使用这一方法搜寻了2700多颗系 外行星。其中,开普勒-62f(Kepler-62f),一颗环绕天琴 座恒星开普勒-62的太阳系外行星,就是以侦测行星通 认为是很可能位于宜居带的一颗类地行星。

而除此之外,凌日法同样也可以帮助天文学家"扩 大战果"——发现行星已知卫星外的其他潜在卫星。

盘点系外行星中五大最有可能的宜居星球

本报记者 张梦然 综合外电

有停歇时。而随着太空科技的发展,正有越来越多的星 高。 球进入候选的名单。据美国太空网一则文章报道,波多 581g行星,在天文学家的坚持下,仍位列榜单之首。

一、格利泽 581g(Gliese 581g)

这个遍布岩石的星球,距离地球所在的太阳系仅仅 20光年,其质量大概为地球的2倍到3倍。每30天或者 利泽 581 运行一周。而在这个行星系统里,格利泽 581g 系 22 光年外的天蝎座中,围绕着一颗红矮星运行。 至少还有四个到五个行星邻居(编号为格利泽 581b 至格 利泽581g,其中"f"是未经证实的一个行星)。

首,主要在于它的公转轨道,或者说它与恒星母星之间 的距离,恰好处在该恒星的"宜居地带"——在这个距离 幅壮丽而诡异的夜幕图景。

自古以来,人类寻找下一个地球的努力与尝试,未 上,水能够以液态的形式存在,出现生命的可能性也最

不过,以上所说的一切,都是建立在格利泽581g确 黎各大学阿雷西博行星宜居实验室(PHL)最近发表的 实存在的设定之上。因为自2010年9月被发现开始,天 家航空航天局(NASA)专职用于发现行星的开普勒空间 研究报告,列出了五个最有可能成为地球之外人类宜居 文学界关于这颗行星是否真实存在的争论,从没有停 望远镜。尽管今年5月后由于反应轮故障已被迫停止了 地的行星。其中,自发现以来始终备受争议的格利泽 止。现在,格利泽 581g的发现者们不仅获得了行星宜居

二、格利泽 667Cc(Gliese667Cc)

格利泽581g的科研团队,同样也是格利泽667Cc的

因其质量至少是地球的 4.5 倍,格利泽 667Cc 得到 星位于天鹅座,整个系统距离太阳系有 600 光年的距离。 了"超级地球"的称号,而它的公转周期却只有28天。值 研究人员认为,之所以将格利泽581g位列榜单之。得一提的是,格利泽667Cc的恒星母星,实际上是一个 三星系统,因而如果人类有机会登上该星,将会看到一

三、开普勒-22b(Kepler-22b)

开普勒-22b的发现者是一架了不起的机器:美国国 离约为35光年,位于船帆座。 搜寻系外行星任务,但曾经光辉的履历不会被抹去—— 实验室的支持,更借助新的研究进展有力回击了反对派 自2009年3月发射升空以来,它已经成功地将2300多颗 潜在的系外行星揽入视野。当然,只有其中一小部分的 存在,目前能够得到确认,大部分的记录在天文研究者 温度约为77华氏度(25摄氏度),而这 看来,可能还是有些理想主义。

2011年12月,开普勒-22b被宣布发现。该星的体 更长一点时间,它便围绕自己的恒星母星——红矮星格 发现者。这颗于2012年2月被发现的行星,在距离太阳 积是地球的2.4倍。按照其产生的温室气体效应推算, 它的地表温度大约为72华氏度(22摄氏度)。其恒星母

四、HD 85512b

它就是欧南天文台利用智利的高精度径向速度行 颗质量约为地球7倍的行星,被发现于

质量达到了地球的 3.6 倍。HD 85512b 距离太阳系的距 格利泽 581d 或许并非如想象中那样荒凉——受温室效应

的恒星母星只有太阳质量的三分之一,而HD 85512b的 展,提出了全新的要求。

云覆盖率至少达到50%,说明其能够将 足够能量反射到太空以防止表面过热, 意味着有很大可能存在液态的水。

五、格利泽 581d (Gliese581d)

与自己的兄弟格利泽581g相比,格 利泽 581d的公转轨道要大了许多。这 星搜索器(HARPS)发现的一颗系外类地行星,HD 2007年。因其不利于生命存在低温环

85512b,堪称格利泽667Cc之外的又一"超级地球",其 境,许多学者对其并不感冒。但是其大气建模研究显示, 的"加热",格利泽581d也有着支持生命存在的条件—— HD 85512b与其他50多个系外行星,同时于2011 当然,若要最终确定这种可能性,科学家们还需要更加直 年9月被 HARPS 摄谱仪所发现。据计算, HD 85512b 接地对其大气进行研究。而这也对先进望远镜的技术发

🖺 策划:聂翠蓉 责编:王小龙 E-mail:gjb@stdaily.com