世界首个县域级100% 新能源新型电力系统可实现 湖北省随州市广水市100% 新能源独立供电,供区人口 超过20万。该新型电力系 统是一种以新能源供电为主 体,与大电网柔性互联,源网 荷储协同互动,面向未来的 电网新形态。

世界首个县域级100%新能源新型电力系统试运行稳定

为大规模消纳新能源探索新路径

◎本报记者 吴纯新 通讯员 甘依依 夏一菲

截至8月28日,一个100%使用风、光新能源供电的新 型电力系统在湖北省随州市广水市已稳定试运行241天。 它既是一个能确保风、光新能源发电发得出、用得上的实 用的现实电网,也是一个开放的、具有未来电网特征的试 验平台。

作为国家电网公司十大科技示范工程之一,世界首个 县域级100%新能源新型电力系统在广水市落地,可实现广 水 100%新能源独立供电,供区人口超过 20万。该新型电 力系统是一种以新能源供电为主体,与大电网柔性互联, 源网荷储协同互动,面向未来的电网新形态。

构建该新型电力系统的意义何在? 它又能如何服务 社会经济发展?

新型电力系统为何花落广水

今年6月初,国家能源局组织11家研究机构编制的 《新型电力系统发展蓝皮书》发布。该蓝皮书指出,新型电 力系统具备安全高效、清洁低碳、柔性灵活、智慧融合四大

数据显示,我国能源活动排放的二氧化碳占二氧化碳 排放总量的88%左右,电力行业碳排放占能源行业碳排放 的42%左右。实现"双碳"目标,能源是主战场,电力是主 力军,新型电力系统则是关键载体。

按全国电网运行与控制标准化技术委员会给出的定 义,新型电力系统是以坚强智能电网为枢纽平台,以源网 荷储互动与多能互补为支撑,具有清洁低碳、安全可控、灵 活高效、智能友好、开放互动基本特征的电力系统。

传统电力系统为何要转向新型电力系统?

伴随新能源发展,我国传统电力系统面临三大困难: 在用电侧,用电负荷持续飙升;在发电侧,极端天气多发, 加上燃料价格不断升高,加剧了部分地区电力紧张状况; 在电网侧,新能源电力大量接入,对电力系统安全构成一

国家能源局相关负责人认为,构建新型电力系统是一 项复杂而艰巨的系统工程,须统筹谋划路径布局,科学部 署、有序推进。

广水凭借丰富的风光资源优势,先行试点示范条件得

随州是湖北新能源装机占比最高、累计发电量最大的 区域。截至7月底,随州新能源并网装机容量达319.19万 千瓦,新能源渗透率达到267.93%,即新能源装机容量约达 到最大负荷的2.68倍。目前,广水新能源装机244兆瓦,最 大负荷61兆瓦,新能源渗透率达到400%。

同时,广水电网属于末端电网,能较为方便地脱离主网, 具备构建新能源装机占比可调(极限情况新能源装机占比 100%)、柔性负荷占比可变、机电一电磁环境可组合的多形 态构网条件,可为源网荷储互动等技术提供试验场地。

2021年12月,国网湖北电力在广水市探索建设全球首 个县域级100%新能源新型电力系统科技示范工程,供电面 积418平方千米,覆盖广水市主要商业、工业和居民客户, 为电网更好地接入和消纳新能源探索新路径,助力能源结

与大电网实现柔性互联

"广水新能源新型电力系统目前还处在第三阶段调 试,整体运行平稳,初步验证了风、光、储独立支撑110千伏 系统的稳定性。"国网湖北省电力有限公司电力科学研究 院新型电力系统研究中心高级工程师胡畔介绍,广水100% 新能源新型电力系统是"以大电网为支撑,新能源供应为 主体,源网荷储实时协同平衡运行"的新型电力系统形态。

广水100%新能源新型电力系统作为一个独立的电网系 统,可以独立运行。但它与大电网的关系并非互不干涉,而 是灵活的柔性互动。风、光发电"看天吃饭",新能源新型电 力系统不确定性较大,大电网可以对其进行兜底保障。

胡畔说,该电力系统与大电网相连,离不开一个关键 设备——能量路由器。能量路由器相当于一个阀门,它类 似 WiFi 网络路由器。当能量路由器开启时,新能源新型电 力系统与大电网"牵手";关闭时,则与大电网"分手"。

与传统电力系统从电源侧经输电、变电、配电流入负 荷端,电压等级由高到低、潮流单向不同,借助能量路由 器,新能源新型电力系统不仅可从大电网取电,当本地风 电、光电有富余时还可反向给大电网送电,实现与大电网

广水 100%新能源新型电力系统是百兆瓦范围内供电 规模最大、柔性负荷占比最大,全部由风电、光伏为电源并 可长期独立运行的100%新能源新型电力系统,该系统首次

构建了近零惯量、全电力电子化的百兆瓦级高比例新能源 电力系统,可实现全年100%新能源供电时间占比超70%, 全年新能源供电量占比超80%。同时,广水示范工程4个 新能源电场、1个能量路由器站、5个光储充站、2个变电 站、17条馈线、703座台变及相关用户设施和储能设施均已 建模至数字孪生电网。该系统还可用于研究新型电力系 统下的电压稳定、频率稳定、电力电量平衡、故障特性等关 键问题,为新型电力系统的理论构建取得创新和突破提供 真型试验场景。

技术创新支撑稳定运行

性和电网形态,未来电网的设计和建设需适应新型电力

为此,广水示范工程科研团队研发出世界首套可支持 百兆瓦级全新能源电网高效稳定运行的源网荷储协同控 制系统,它可实时协同控制分布式电源、储能、能量路由器 等电力电子化设备,实现各种极端复杂功率波动场景下, 尤其是100%新能源独立组网时的电压、频率稳定,满足系 统联网运行时绿色高效、孤网运行时安全可靠等多种需 网型控制器,并在真实电网中首次验证整站构网特性,使

自国家提出建设新型电力系统以来,我国电网企业 以确保能源电力安全为基本前提,以满足经济社会发展 电力需求为首要目标,以最大化消纳新能源为主要任务, 以坚强智能电网为枢纽平台,努力构建并完善我国新型 电力系统。

究得出的结论与新能源占比不断提高的实际发展路径相 结合,建设数字孪生电网,实现系统全景感知、智能决策, 以云计算技术、人工智能算法为支撑保障新型电力系统安

解决方案。"

建设新型电力系统需要改变传统电源结构、负荷特 系统的复杂性。

求。同时,该科研团队还研制出新能源及储能机组成套构 得新能源发电装备和储能电源具备与煤电、水电等常规电 源相近的性能。

进一步完善我国新型电力系统,可把小型真实场景研

国网湖北省电力有限公司党委书记、董事长吴英姿表 示:"下一步,公司要全面落实率先建成湖北新型电力系统 的工作方案,争取2024年在鄂北建成国内首个跨地市区域 新型电力系统,为新型电力系统大规模建设提供湖北成套

浙江清洁能源装机总量首超煤电

◎洪恒飞 张正华 本报记者 江 耘

记者近日从国网浙江省电力有限公司 (以下简称国网浙江电力)了解到,截至今 年7月底,浙江全省清洁能源装机总量达 到 5751 万千瓦,超过同期煤电机组装机总 量,约占浙江电力装机总量的46%。这也 是浙江清洁能源装机首次超过煤电机组。 其中,水电机组1391万千瓦,光伏发电机 组2941万千瓦,风力发电机组467万千瓦, 核能发电机组917万千瓦,地热能、海洋能 等35万千瓦。

国网浙江电力发展部相关负责人表 示,从以煤电装机为主,到清洁能源后来居 上,一次能源匮乏的浙江,近年来通过实施 "风光倍增"计划、布局沿海核电项目等举 措,在保障电力供应的同时,不断推进省内 能源清洁化进程。

因势利导调整用能结构

浙江的能源结构曾经长期以火电为 主。在煤炭、石油等化石能源方面,浙江并 不具备天然优势,但借助沿海和内河便利 的通航条件,杭州、嘉兴、宁波、台州、温州

进入"快车道"。10年间,浙江先后投运5 条特高压输电网。比如今年6月,国家电 网±800千伏钱塘江换流站双极高端系统 顺利完成试运行,至此,我国"西电东送"重

> 2021年3月,中央财经委员会第九次 会议提出构建新型电力系统,为新时代能 源电力发展指明了科学方向。同年5月, 浙江省发改委、浙江省能源局发布《浙江省 可再生能源发展"十四五"规划》。该规划 提出,大力发展风电、光伏,实施"风光倍增 计划";更好发挥以抽水蓄能为主的水电调 节作用;因地制宜高质量发展生物质能、地 热能、海洋能等。近两年来,浙江新能源发

等地先后建设了一大批火电厂。

直到21世纪的第二个十年,浙江原有

的能源结构开始调整。2013年,浙江首个

特高压工程投运。自此,浙江特高压建设

点工程——白鹤滩—浙江±800千伏特高

压直流输电工程实现全容量投产,预计年

绍,目前每年通过特高压输电工程输入浙

江的省外来电约1000亿千瓦时,消纳省内

国网浙江电力发展部相关负责人介

送电量可达300亿千瓦时。

新能源发电近500亿千瓦时。

万千瓦。

"国家层面在沿海重点布局核电,秦山 核电站、三门核电站,以及正在建设的苍南 核电站,都成为或将成为浙江能源清洁化 的重要力量。"国网浙江电力发展部相关负

展呈现井喷趋势,新增风光装机超过1000

责人表示。

坚持清洁高效绿色发展

"清洁能源时代的加速到来,将系统重 塑浙江乃至中国的能源电力形态。传统电 力系统多种电源简单叠加的形态将不再适 应新型电力系统的要求。"国网浙江电力 发展部相关负责人认为,浙江需要加快风 光互补、风光水火储一体化等多元协同开 发模式,充分发挥水、火、核、风、光、储等元 素的协同互补作用。

根据《浙江省能源发展"十四五"规 划》,浙江将继续实施"风光倍增"工程,着 力打造百万千瓦级海上风电基地。

"十四五"期间,在推进清洁能源替代 方面,浙江还将提高终端用能低碳化、电气 化水平,在工业领域加大电加热、电加压和 辅助电动力等技术应用,在交通领域加快 推动电动汽车、新能源船舶、港口岸电普及 应用,在居民生活领域推进城镇家庭全电 住宅、农村家庭电气化提升建设。

该负责人认为,能源清洁化是全社会 共建共享的成果,需要全社会的共同参 与。在政策支持上,要不断优化能源领域 的发展规划,加强对清洁能源开发的支持 力度,配合相关配套电网建设工作,在完善 电力辅助市场机制、绿证市场化交易等方 面,给予更大支持,同时引导人们多用清洁 电能。

★新看点

页岩气领域 首项国际标准正式发布

科技日报讯 (黄媚 何娜 孙茹 记者何亮)8月30日,记者从 中国石油西南油气田分公司天然气研究院(以下简称天研院)获 悉,由该院牵头制定的国际标准ISO 7055:2023《天然气 上游领 域滑溜水降阻性能测试方法》正式获得ISO国际标准化组织批准 发布。这是页岩气领域的首项国际标准,也是我国在页岩气国际 标准领域取得的重要突破,为我国页岩气技术参与国际市场竞争 迈出了关键一步。

2010年以来,为突破页岩气开发中降阻性能室内评价方法不 准确的技术瓶颈,天研院科研人员对降阻性能测试理论进行系统 研究,经过多年持续攻关,首次提出有效管径改进模型。通过对该 模型的应用,室内降阻性能测试准确率可提高至90%以上,降阻率 达到73%-78%,滑溜水成本降低90%,有效支撑了页岩气"工厂 化"作业高效平稳运行。

据了解,该项成果被写入我国能源行业页岩气标准化技术委 员会制定发布的首批行业标准中。2021年,ISO国际标准化组织 正式批准成立国际工作组推进该项目。2022年,该项目由ISO国 际标准化组织正式批准立项,2023年8月成功发布。

四川盆地再添新气田

科技日报讯 (记者操秀英)记者8月28日从中国石化新闻办 获悉,中国石化"深地工程·川渝天然气基地"再获突破,由中国石 化勘探分公司提交的巴中气田首期305.5亿立方米探明地质储量, 顺利通过自然资源部油气储量评审办公室审定,这标志着中国石 化在四川盆地再添新气田。该气田的发现进一步揭示了川东北地 区致密砂岩良好的勘探潜力。

巴中气田位于四川省巴中市境内,是中国石化勘探分公司第 三个以须家河组致密砂岩为主要目的层的气田。截至目前,该公 司已在川东北须家河组致密砂岩领域累计提交探明地质储量 1547.47亿立方米。

通常而言,埋深超过4500米的砂岩气藏,被定义为超深层致 密砂岩气藏。巴中气田须家河组砂岩气层埋深为4550米-5225 米,为典型的超深层致密砂岩气藏,砂岩埋深大,勘探开发难度 大。中国石化高度重视致密砂岩气藏勘探攻关,针对致密砂岩是 否存在相对优质储层和高产富集带的问题,依托十余项国家科技 重大专项和中国石化科研项目,创新建立了须家河组三类优质储 渗体发育模式,明确了天然气富集高产模式,形成了储层预测技术 序列,精细落实了富集高产带。

针对致密砂岩储量动用难度大的问题,攻关团队借鉴非常规体 积压裂思路,创新采用体积压裂改造,实行"一段一策"技术管理,及 时优化工程参数和施工程序,较大幅度提高了储量动用程度。下一 步,中国石化将持续攻关四川盆地致密砂岩领域地质评价和工程工 艺攻关,扩大储量规模和升级动用,同时,加强巴中地区常非一体化 研究部署和多层系立体勘探评价,进一步扩大勘探成果。

无锡开展大规模电动汽车 向电网放电实用化验证

科技日报讯 (记者王怡 通讯员岳芸 孙嘉隆)8月28日,记者 从国网无锡供电公司获悉,近日,全国超大规模电动汽车放电实用 化验证在江苏无锡举行,50辆4种不同类型的电动汽车同时反向 放电30分钟,功率达到2000千瓦。验证结果显示,车网互动技术 可实现社会化资源参与电网调峰,助力实现"双碳"目标。

此次实用化验证在国网无锡供电公司车网互动验证中心进 行,50辆电动汽车分成两排,接入充放电桩后,车主们同时点击手 机小程序中的放电按钮,待设备自动检查车辆放电能力后,在30 秒内即可向电网反向充电。

"从测试结果来看,50台电动汽车的反向放电功率近2000千 瓦,全部负荷电量均已接入市级虚拟电厂平台,可满足133户居民

一天的正常用电需求。"国网无锡供电公司副总经理顾志强说。 顾志强介绍,本次实用化验证目的是把"电动汽车与电网双向互动 技术"从实验室推向实际应用,验证不同电动汽车在同一环境下充放电 的可行性、大容量反向放电的安全性,以及电网建设运行的经济性。

据了解,电动汽车给电网反向充电技术是车网互动的重要组成部 分。其利用大量电动汽车的电池能源储备作为电网调峰能力的补充, 能有效缓解电网供电压力,提高能源利用效率,充分发挥电动汽车在 能源体系中的重要作用,提高电网调峰调频、安全应急等能力。

