过去,当电网负荷降低 时,电厂机组必须下调发电 功率,一般下调到50%就已 是极限。引入电力现货市场 后,市场机制促使企业进行 技术升级,许多电厂已经把 功率下调的极限降到 38%。有企业表示,经过技 术改造,发电功率还有进一 步下调空间。

动态调节电力供需

负电价激发电力市场正效应

◎本报记者 张 晔

近期,负电价在多国上演。7月4日,德国与荷兰部分 时段电力出现-500欧元/兆瓦时的价格。无独有偶,今年 5月,我国某些地区也出现过类似的负电价。什么是负电 价? 负电价的出现意味着什么?

电力现货市场促能源效益提升

负电价是指市场中的电力价格低于零,它意味着发电 企业在销售电力时不仅赚不到钱,反而要给电网企业或者 电力用户支付一定费用,吸引他们将多余的电力消纳掉。

中国电力科学研究院电力自动化研究所(以下简称电 力自动化研究所)党委书记杨争林告诉记者,电力是一种 特殊的"商品",不能大规模存储,需要实时保持发用平衡。

新能源的大量并网,对电网稳定性提出了更高要求。 一天中新能源发电量较大的时段,往往用电需求不足,而 一些新能源企业发电享受政府补贴且发电边际成本较低, 就会选择报负电价的方式来确保发出的电量可以上网,从 而促进新能源消纳。对于煤电、核电等传统机组而言,短 期启停成本较高、损耗大,为了维持机组正常运行,只能倒

负电价并不一定是坏事,它使得电价波动范围扩大,对 发电端和需求端都能形成一定的激励。在发电端,价格高的 电源将失去竞争力,这有助于纠正盲目的电源投资。同时, 负电价的出现还可引导企业加大储能设施建设力度,激励火 电企业进行技术改造,以更好地匹配电网需求和新能源的不 稳定性。在需求端,负电价的出现会激励耗电大户改变用电 模式、实施错峰生产,引导企业主动优化工艺、降低能耗。此 外,它还将增加电力消费侧的弹性,通过电力需求灵活度的 增强,解决电力系统中短期供需波动的问题。

以山西省为例,开展电力现货市场试点建设后,过去 少有人问津的谷电现在更受欢迎,用电负荷峰谷差降低 了4%,取得的能源效益相当于少建一座120万千瓦的发

同时,发电侧的变化也在悄然进行。过去,当电网负 荷降低时,电厂机组必须下调发电功率,一般下调到50% 就已是极限。引入电力现货市场后,市场机制促使企业进 行技术升级,许多电厂已经把功率下调的极限降到 38%。有企业表示,经过技术改造,发电功率还有进一步 下调空间。

"在市场中,负荷调整就像见缝插针。调节能力强的 机组参与上网的机会多,调节能力差的有机会也上不去, 这就倒逼发电企业通过技术进步提升发电效率。"电力自 动化研究所电力市场研究室主任冯树海表示。

"看不见的手"优化电力资源配置

我国自2015年开启新一轮电力体制改革以来,完善电 力市场建设就一直是改革的重中之重,其中价格机制又是 市场机制的核心。负电价的产生并不意味着市场调控的 失灵,相反,它意味着我国的电力体制机制改革又进了一 步。负电价的背后,正是电力市场在通过"看不见的手"优

杨争林解释道,电力市场可以分为中长期交易中心和 现货市场。其中,中长期交易中心主要以年、月、周为时间 单位进行电力买卖,而现货市场主要开展当日和次日电力 交易。负电价的出现,正是后者起作用的表现。

电力现货市场,顾名思义就是"一手交钱一手交货"的 电力市场。电力现货市场有何特点?杨争林打了个比方: "比如去菜场买白菜,早上开市的时候1元一斤,而到了晚 上快收摊的时候可能会降到5毛一斤。一天不同的时间, 白菜的价格不一样,这说明白菜在一天中产生了时序价 格。同时,菜市场和地摊这两个不同位置的白菜价格也不 一致,这说明白菜交割点不同产生了位置信号。受供需等 因素影响,电也有时序价格的差异,且不同地区发电成本 不同,电的价格也不同。

电力现货市场有利于发挥市场在资源优化配置中的 决定性作用,使那些能源禀赋强、发电能力强的地区能够 将电卖到耗电量大的地区,从而提高经济效益;同时促进 新能源消纳,大大降低新能源发电波动性和不确定性对电 网的影响。

技术创新支撑电力市场建设

电力现货市场的构建,离不开相应的技术支持。

记者了解到,电力自动化研究所研发的电力市场技术 支持系统,将电力中长期交易市场与现货市场有效衔接, 既有利于新能源消纳,也助推了火电技术进步,还提升了 电力大户的用能效益,有效推动了我国能源绿色低碳转 型,促进了电力资源优化配置。"在安全有保障的情况下, 要保证优先购买低价电来满足用电需求。这背后的技术 支撑体系就是我们研究的重点。"杨争林说。

电力现货市场因交易和交付的间隔时间较短,价格 会随时间波动。在我国试点建设的电力现货市场中,电 力日前市场以15分钟为一个交易时段,每天96个时段; 日内市场每个交易时段为15-60分钟;实时市场以交割 时点前一小时的电能交易为准。为了精确计算电价、撮 合交易,电力市场必须考虑上百万个变量,这将消耗极大 的算力。

面对未知且复杂的电力市场运行边界,如何设计出 符合我国国情的电力市场体系? 杨争林表示,实验室团 队正在探索使用人工智能,根据过去电力供需的特点分 析市场规律,预测未来的市场走势。"我们利用人工智能 找出了限制因素,将约束变量从上百万个减少到原有的

"团队已成功研发了省级电力现货市场云架构支撑平 台,提出了多维度数据统一建模技术、异构数据库混合存 储与联动展示技术、客户端和服务端图形组态技术和微服 务持续交付技术等。"杨争林表示,基于这个平台,研发人 员可以像拼"乐高"模型一样,实现一部分功能需求的敏捷 开发,这极大地提升了研发效率,有助于团队快速响应市 场规则的变化。

从整体上看,我国能源资源与用电负荷呈逆向分布态 势,东部地区用电量大但资源有限,西部地区资源丰富但 供过于求。同时,我国水电、气电等灵活调节资源占比较 低,新能源规模大但分布地区较为集中。开展大规模的电 力市场交易,将成为实现全国范围内电力资源优化配置的

立足全国统一电力市场建设要求,该研究所在国内外 尚无同类实践案例的情况下,历时2年,自主研发了计及 ATC的省间中长期集中优化出清技术,取得了该领域从 "0"到"1"的突破。ATC即"可用传输容量",是指电网在已 有交易或合同基础上可进一步用于交易的剩余输电容 量。该技术的成功研发,为全国统一电力市场深化改革提 供了决策支撑。

★新看点

智能调控系统让 电网"预知"用能调度需求

科技日报讯 (洪恒飞 徐轩 记者江耘)8月14日,记者从国网 衢州供电公司获悉,该公司开发的水光储余缺互济智能柔性精准 调控系统近日上线试运行。该系统汇聚了浙江衢州96万千瓦水 电、光伏与储能资源,并将其融为一体进行运行管理,可实现电网 调度由事后调节向事前调节转变,近期将为夏季电力保供工作提 供支撑。

衢州光伏资源丰富,光伏发电装机容量占当地各类电源装机 容量的比重已突破40%,高峰时段,衢州地区60%的供电都来自光 伏。光伏电站在带来绿色电力的同时,其"靠天吃饭"的特性也为 电网运行带来了新的挑战——天气一旦发生变化,电网供电能力 将会产生大幅波动。一般情况下,电网调度员只能在波动发生后 被动应对。

该项目负责人、国网衢州供电公司调控中心方式计划室主任 吴昌介绍道,该系统可根据自动实时获取的气象信息,得知某时段 衢州某区域即将出现的局部强对流天气,再据此由系统算法推算 出一定时段内区域光伏发电量的变化。结合预测的用电数据,该 系统可弹窗提醒调度员产生的调节需求,并提前生成调度策略表, 做到未雨绸缪。

目前,该系统已接入衢州各类水电、光伏、储能电站300余座, 接入资源规模96万千瓦,汇集电网模型、运行数据、水雨情、气象、 储能等全要素信息3000余万条,日前负荷预测精度达97.3%、光伏 预测精度达94.5%,评价决策响应时间小于15分钟。

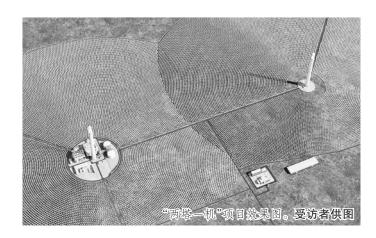
据悉,该系统由"资源概况,预测中心、调节分析、聚合监控"4 个子模块构成。它以实现海量资源"余缺互济,集群调控"为目标, 利用大数据、人工智能等数字化技术,整合了水电站流域关联模 型、水电及光伏出力模型以及储能电池充放电模型,搭建出水光储 一体的虚拟电厂,可在光伏发电能力较多时消纳多余电能,在光伏 发电能力不足时补足电能缺口,发挥水电、光伏、储能的合力作用。

戈壁滩上"两塔一机"现雏形

◎本报记者 颉满斌 通讯员 李竹青

西北一望无际的戈壁滩"风""光""热"资源充足。近日,中国 能建葛洲坝电力公司举行企业开放日活动。在该公司负责建设的 三峡恒基能脉瓜州70万千瓦"光热储能+"项目施工现场,记者看 到,设施建设井然有序,两座吸热塔拔地而起、比肩而立。全球首 个实际投入建设的"两塔一机"塔式光热发电项目,同时也是甘肃 省瓜州县首个光热发电项目,在4400亩的戈壁滩上已初现雏形, 将为探索推动光热发电与光伏发电、风电互补调节等多种能源联 合调度模式提供经验。

相对于"单塔一机"式光热项目而言,全球首个"两塔一机"项 目采用小面积的定日镜及两塔两镜场设计,能有效提高光的利用 率,进而提高发电效率。椭圆形镜场设计及两塔中间镜场交集区, 可提升吸热塔光热利用率。经过大量的技术研究和效率演算,"两 塔一机"在同等边界条件下可提升约23.94%的镜场效率。


据介绍,"两塔一机"项目在光热电站设置了两个相邻的吸热 塔。这两个吸热塔上的吸热器各自吸收定日镜反射的太阳光,并 将吸热器内的介质加热至设计温度,被加热后的高温介质可直接 (或间接)通过热力循环推动一台发电机发电。

"两塔一机"项目的建设为实现单机更大功率的"多塔一机"积 累了经验。相较于"单塔一机"光热电站,"多塔一机"光热电站通过 共用部分区域的聚光场,提高了聚光场利用率;通过配置更大规模 的汽轮发电机组,提高了汽轮发电机组的热电转换效率;通过共用 储换热系统和常规发电岛系统,减少了占地面积和运维人员数量,

提高了电厂的经济性;通过降低吸热塔高度,提高了设备的可靠性。 目前,三峡恒基能脉瓜州70万千瓦"光热储能+"项目已取得 初步进展。预计今年11月30日前,该项目风电工程和光伏工程的 全部施工工作可完成。

三峡恒基能脉瓜州70万千瓦"光热储能+"项目建成后,一年 可发电约18亿千瓦时,可节约标准煤58.5万吨,减排二氧化碳 160.76万吨、氮氧化物295.1吨、烟尘42.71吨。

三峡恒基能脉瓜州70万千瓦"光热储能+"项目是国家发改 委、国家能源局批复的第一批以沙漠、戈壁、荒漠地区为重点的大 型基地建设项目之一,包括风电工程、光伏工程、光热工程三个部 分,"两塔一机"是光热工程的技术特征。

上半年11省市岸电使用量同比增63%

船舶用上岸电 港口更加绿色

◎本报记者 吴纯新 通讯员 方龄皖

8月14日,在湖北宜昌九码头泊位旁, 电力工人缓缓放下线缆,在岸电智能控制 柜上点击操作,"长江三峡10"号游轮随即 接通岸电,轰鸣的柴油发电机声慢慢消失。

所谓岸电,简言之就是港口码头陆地 上的电。岸电通过专用设备接入靠停的船 舶,使其停止燃油辅机发电,达到"零油耗、 零排放、零噪音"。

岸电作为港航领域最具节能减排前景 的技术,是绿色港口建设的重要内容,靠港 船舶使用岸电能够有效实现空气污染物减 排。除此之外,使用岸电可以减少噪音和 降低能耗,具有良好的环境效益和经济效 益。我国岸电推广取得了哪些成效?还有 哪些问题需要解决?

可大幅减少污染物排放

2015年4月1日,三峡库区湖北宜昌沙 湾锚地岸电试点工程送电,这是长江的第 一批岸电设备。"通过采用岸电系统,能安 全高效地为船舶输送岸电,满足船上生产 作业、生活设施等电气设备的用电需求,大

大降低污染物排放量。"国网宜昌供电公司 岸电运维服务人员李兴衡说。

作为三峡大坝和葛洲坝所在地,每年 近6万艘次的船舶在宜昌待闸、过闸,船舶 污染防治成为一道必答题。2018年6月, 国家电网公司会同交通运输部、财政部、国 家能源局、湖北省人民政府、三峡集团等建 立政企合力的协同工作机制,重点建设三 峡坝区岸电实验区,推进长江流域岸电设 施全覆盖。2019年4月,三峡坝区岸电实 验区建成,岸电建设已覆盖宜昌江段63个 经营性码头、2个锚地、165台套岸电桩,岸 电供电容量达 2.52 万千伏安。截至 5 月 末,宜昌岸电累计为1.6万余艘次船舶提供 清洁能源2600多万千瓦时,替代燃油6190 吨,减排二氧化碳近20000吨,相当于8000 到 10000辆小汽车一年的排放量,为船舶 节约用能成本3000万元以上。

根据交通运输部长江航务管理局(以 下简称长航局)发布的数据,今年以来,长 江经济带船舶靠港岸电使用量大幅提 升。今年1一6月,长江经济带11省市船 舶靠港使用岸电共 432555 艘次、用电量 达 51182359 千瓦时,同比分别增长 40%、

长江经济带岸电使用量的提升,折射

出近些年来我国为推广清洁岸电做出的

2017年8月,交通运输部印发了《港口 岸电布局方案》,提出2020年实现全国主 要港口和船舶排放控制区内港口50%以上 已建的集装箱、客滚、邮轮、3000吨级以上 客运和50000吨级以上干散货专业化泊位 具备向船舶供应岸电的能力的建设目标。 进入"十四五"时期,相关部门先后印发《关 于加快建立健全绿色低碳循环发展经济体 系的指导意见》《关于完整准确全面贯彻新 发展理念做好碳达峰碳中和工作的意见》 《2030年前碳达峰行动方案》等文件,全面 推动岸电使用常态化。

健全法规制度提高使用率

虽然岸电在我国部分地区的推广取得 了成功,但总体上看,目前我国仍然存在岸 电设施建设多使用少、船侧岸电改造率低 等问题,这制约着岸电使用。

交通运输部水运科学研究院首席研 究员彭传圣认为,自2010年我国致力于 推动靠港船舶使用岸电以来,目前港口岸 电供电系统建设成绩斐然,船舶受电系统 改造特别是长江经济带省市登记船舶受

电系统改造也在按计划进行中。但从全 国范围看,现有港口岸电供电系统使用效 率极低,原因在于航运公司投入大,具备 岸电受电能力船舶少;缺乏激励措施,船 长积极性不高;现行法律没有具体要求, 监管难到位;国际航行船舶不符合岸电受 电要求。为此,需要对症下药解决问题, 建议进一步完善大气污染防治法和海洋 环境保护法,明确靠港船舶使用岸电的责

中国船级社质量认证公司科技中心高 级工程师可雪杰认为,当前船侧使用岸电 存在一些问题,首先是船方害怕岸电不稳 定,对船舶供电设备产生危害。与此同时, 船方如果使用岸电,使用岸电期间需要配 置专职人员,这在一定程度上提高了使用 岸电的门槛。此外,船方认为使用岸电的 成本相对更高,这也是船侧对于使用岸电 积极性较低的原因之一。关于如何推进船 侧使用岸电,他建议从健全法规制度体系 入手,从源头上提升针对岸电运用的综合 约束力。除了制度层面的努力,还可以创 新奖励体制,用激励的方式提升船方的积 极性。为了提高船舶岸电使用率,保证使 用规范,还应当加强对船舶岸电使用的宣

传贯彻和日常监督检查。