这一年,和宇宙亲密接触

本报记者 唐 婷

首次"看"到银河系外行星

现有的行星探测方法,通常只能探测到银河系内行星。今年2月,美国科学家 发表论文表示,通过对现有的探测方法进行创新,首次发现了银河系外RX J1131-1231星系中的一群行星。

RX J1131-1231星系距离地球38亿光年。如此遥远的距离,以至于即使是现 在最先进的望远镜也无法直接观测到它们。天文学家综合利用了引力透镜与微引 力透镜效应来寻找系外行星——星系的引力透镜效应使后方背景天体形成了多个 虚像,星系中的恒星和行星产生的微引力透镜效应,使这些虚像的光度和谱线频率

观测和模拟结果显示,在该星系中央,栖息着一群行星,质量介于月球和木星 质量之间。用微引力透镜造成的这台"望远镜",精度超过地球上以及天空中精度 最高的观测仪器,让人类首次在其他星系找到行星存在的证据。

该项研究负责人、俄克拉荷马大学物理学与天文学系教授戴新宇在接受 媒体采访时表示,"这是首次在银河系外发现行星,借助我们的新方法,现在可 以研究这些行星,揭示它们的存在,甚至获得它们的质量,这将开启新的探索

银河系中心恒星70亿岁

银河系是一个漩涡星系,其中心有一个凸起,直径达数千光年,包含了银河系 恒星总质量的四分之一。那么,无论是在位置,还是在质量上都占据核心地位的这 一群恒星们到底有多大年纪?

今年4月,在英国利物浦举行的欧洲天文与空间科学周上,欧洲南方天文台领 导的国际天文学家团队公布了银河系首张大规模年代图,显示了银河系中心的复

该团队分析了单颗恒星的化学性质、颜色、亮度和光谱信息,并利用模拟和观 测的数据,调查了银河系数百万颗恒星,将其与光谱仪测得的6000颗恒星的金属 含量进行了比较,最终产生了银河系的年龄图。

此前的研究认为,银河系中心由两部分组成:一部分是球形分布的贫金属恒星 群;另一部分是富含金属的恒星群,形成一个带"腰"的细长条,就像 X 形的花生状 棒旋。其中,富含金属的恒星可能是最年轻的恒星。

该团队的研究则得出了不一样的结论。通过分析那些刚刚到达核心氢燃料燃 尽临界点的恒星后,该团队认为,银河系中心最年轻的恒星也至少存在70亿年了, 比以前的一些研究显示的年龄要老很多。由此说明,银河系中心早在70亿年前就 形成了,且之后并没有大量气体流入以形成新的恒星。

古代火星或有生命

探索宇宙中的生命迹象,既是为了满足人类的好奇心,也是为了缓解人类在茫

北京时间6月8日,美国国家航空航天局(NASA)宣布了两项关于火星的重要 发现。其中一项是,"好奇"号漫游车在火星表面的沉积岩中发现了有机分子,说明

火星可能曾存在远古生命。 有机分子由碳、氢组成,可能还包含氧、氮和其他元素。虽然有机分子通常与 生命有关,但也可以通过非生物过程产生,并非存在生命的必要指标。

在盖尔陨石坑,"好奇"号钻入一块约30多亿年前的沉积岩仅5厘米时,发 现了有机分子。此次识别出的分子包括噻吩、苯、甲苯以及丙烷、丁烯等短链 碳,有机碳含量达百万分之十的数量级,约为此前在火星表面探测到的有机碳 含量的100倍。

NASA 戈达德太空飞行中心的珍妮弗·艾根布罗德表示,"好奇"号尚未确定有 机分子的来源。无论这些有机物是远古生命留下的记录,或者没有生命也能存在, 都能提供与火星环境和演变过程相关的化学线索。

"隼鸟2号"抵达"龙宫"

6月27日,历经3年半的长途跋涉,日本"隼鸟2号"探测器顺利抵达"龙宫"上 空约20千米处的预定观测点,准备对"龙宫"进行一系列复杂的近距离研究。

按照计划,抵达预定观测点之后,"隼鸟2号"将在小行星"龙宫"表面部署3台 漫游车和一台着陆器。它还会使用带有爆炸物的冲击器凿出一个小火山口,并从

在接近"龙宫"的旅途里,"隼鸟2号"一直忙着给"龙宫"拍写真。日本宇宙航 空研究开发机构(JAXA)的官员称,"隼鸟2号"上搭载的光学导航相机-望远镜为 "龙宫"拍摄了多张照片。其中一张显示,900米宽的"龙宫"像一颗恒星一样在夜 空闪烁。拍摄此照片时,"隼鸟2号"距离"龙宫"约1500公里。

"隼鸟2号"是日本的第二个小行星取样任务。2010年,第一个小行星取样探 测器"隼鸟号"首次将样本从小行星"系川"(Itokawa)带回地球。系川是一颗石质 (S型)小行星;而"龙宫"是一颗碳质(C型)岩石小行星。许多科学家认为,这种岩 石小行星可能在很久以前与地球的碰撞中,将生命的基本构成元素送到了地球上。

冰立方"找到高能中微子源头

7月13日出版的《科学》杂志刊登封面文章,称"冰立方"中微子天文台找到耀 变体发射超高能中微子的证据。这篇文章中提到,2017年9月22日,冰立方探测 到一个能量为290 TeV(万亿电子伏特)的中微子。目前能量最高的加速器——欧 洲核子研究中心的大型强子对撞机,只能把粒子加速到7 TeV。

作为粒子界的"隐士",中微子也是宇宙奥秘的"告密人"。事实上,除去物理学 层面的意义以外,研究中微子对于了解恒星的结构和演化,乃至宇宙的起源都有着 重要的科学意义。因此,天文学里专门有一个分支叫做中微子天文学。

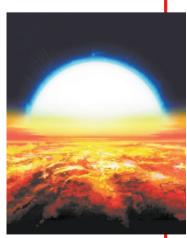
来自宇宙深处的高能宇宙射线到达地球时,人们无法推断出它们从何而来。 因为带电粒子在穿过太空时,星系和星系间的磁场会改变这些粒子路径。理论上, 宇宙射线的源头也会产生中微子。捕捉中微子,可以帮助科学家找到宇宙射线的

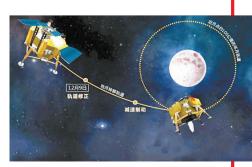
截至目前,"冰立方"已经探测到了多个超高能中微子,能量高达10¹⁵eV。科学 家们正在努力探究这些高能中微子是如何产生的,以及来自宇宙何处。极端的宇 宙现象,例如活动星系核和伽马射线暴,可能是它们的来源,这两种现象同样也可 能是宇宙射线的来源。

在浩渺无垠的宇宙中,人类乃至地 球,都渺小得如同大海里的一滴水。在 宇宙长达137亿年的生命历程中,2018 年也不过是弹指一挥间。

然而,人类探索宇宙的决心和努力 却从未改变。2018年,人类探索宇宙的 脚步继续前行。一串串坚实的脚印,搭 建了通往未来的天梯。

"好奇"号在火星发现古老有机分子


帕克太阳探测器发射升空


隼鸟2号"对小行星"龙宫"展开探测

"冰立方"找到耀变体发射超高能中微子证据

行星KELT-9b的大气温度非常高

嫦娥四号将在月球背面降落

"帕克"奔日探秘太阳风

尽管一度推迟发射,但人们还是等来了"帕克"顺利升空的好消息。8月12日, 帕克太阳探测器在美国卡纳维拉尔角空军基地发射升空。"帕克"将以前所未有的 距离靠近太阳,有望对多个科学问题的研究起到决定性的推进作用。

除了给予地球光和热外,一种被称作"太阳风"的高速等离子体流时刻从太 阳表面涌出,并向太阳系的深处奔去。当它到达地球附近时,会与地球的磁场发

太阳日冕中,太阳大气的等离子体温度从六千多摄氏度猛增到了数百万摄氏 度。"帕克"将深入到日冕加热和太阳风加速真正发生的地方,寻找日冕反常高温的

科学家们已确认速度在450-850公里/秒的快速太阳风发源于冕洞之中。但 对于速度在250-450公里/秒的慢速太阳风来自何方,目前仍然存在争议。"帕克" 的观测将帮助科学家们弄清太阳风的起源问题。

通过7次飞掠金星的借力飞行,帕克太阳探测器在7年后会最终将自己的轨道 高度降低到9个太阳半径以下,在最后3圈飞行中实现对日冕近距离探测的目标。

元素铁现身系外行星大气

不仅人类会发烧,星星也会。天文学家们确认在一颗"发高烧"的系外行星 KELT-9b的大气中,探测到了铁和钛。这是人类历史上首次在系外行星大气中发 现铁。这项研究发表在8月15日的英国《自然》杂志上。

铁虽然是丰度最高的过渡金属元素,但天文学家从未在系外行星大气中直接 探测到铁。而KELT-9b是一个非常罕见的例子,它作为一颗行星,因为正在"发 烧",温度几乎与一个暗恒星相当。

瑞士伯尔尼大学研究团队,借助西班牙加纳利群岛拉帕尔马岛的国家伽利略 天文望远镜上装载的北方高精度径向速度行星搜索器(HARPS-N)光谱仪,于 2017年7月31日至8月1日夜间对KELT-9b的高分辨透射谱中的金属元素谱线进

研究人员不仅检测到了中性铁原子和一次电离铁(Fe和Fe⁺)以及一次电离钛 (Ti⁺),还发现检测到的Fe⁺谱线比Fe 谱线强度要大,并据此分析认为,KELT-9b的 大气温度超过了4000开氏度(3726.85℃)。此次的发现和这颗行星的状态都颠覆 了以往的认知,将进一步推动行星演化学研究。

月球两极表面存在水冰

8月21日,NASA官网发布消息称,在月球两极地区最黑暗和最寒冷之处,美 国科学家直接观察到了表面水冰的确切证据。

夏威夷大学和布朗大学的科学家小组,使用NASA月球矿物绘图仪(M3)提供 的数据,确定了3个特定的标记,可以确凿无疑地证明月球表面存在水冰。这些冰 沉积物分布不均,而且可能很古老。南极的大部分冰集中于月球陨石坑;而北极的 冰则分布得更稀疏、广泛。

该团队指出,新发现的大部分水冰位于月球极地附近陨石坑的阴影中,此处最 高气温从未超过零下250华氏度(约-157℃)。由于月球旋转轴的倾斜非常小,所 以,阳光永远照射不到这些区域。

M3位于印度空间研究组织于2008年发射的"月船1号"(Chandrayaan-1)航天 器上,拥有独特的装备,可以确认月球上是否存在固体冰。它收集的数据不仅能获 得人们期望从冰那儿获得的反射特征,也能直接测量冰分子吸收红外光的独特方 式,因此可以区分液态水、蒸汽和固体冰。

LIGO发现迄今最大黑洞合并事件

自2017年8月第二次观测运行结束以来,科学家们一直在升级激光干涉仪引 力波天文台(LIGO)和欧洲的"处女座"(Virgo)引力波探测器,使其更加灵敏。升 级版的LIGO带来了新的发现。

物理学家组织网12月3日报道称,一个国际科学家团队通过分析高新激光干 涉仪引力波天文台(Advanced LIGO)获得的观测数据,发现了迄今最大的黑洞合 并事件和另外三起黑洞合并事件产生的引力波。前者合并成了一个约为太阳80 倍大小的新黑洞,也是迄今距离地球最远的黑洞合并。

澳大利亚国立大学(ANU)广义相对论和数据分析小组负责人苏珊·斯科特领 导的团队探测到,迄今最大黑洞合并事件发生在2017年7月29日,发生地距地球 约90亿光年。另外三起黑洞合并事件发生于2017年8月9日至23日期间,与地 球的距离为30亿至60亿光年,产生黑洞的大小为太阳的56倍至66倍。

斯科特指出,它们来自四个不同的双黑洞系统,它们聚集在一起并将强大的 引力波辐射到太空中。探测到这些黑洞合并事件有助于人们进一步理解宇宙 中有多少双黑洞系统、它们的质量范围以及合并过程中黑洞的旋转速度等。

嫦娥四号将探访月球背面

12月8日2时23分,我国在西昌卫星发射中心用长征三号乙运 载火箭搭载着嫦娥四号探测器成功升空,开启了月球探测新旅程。

和以往不同,嫦娥四号任务的科学目标都将在月球背面完 成,包括实现月基低频射电天文观测,月球背面巡视区形貌、矿 物组份探测,月球背面巡视区浅层结构探测等。该探测器项目 执行总监张熇表示,因为过去没有别的探测器在月球背面降落 过,所以不论是探地形还是探月壤成分,都将是人类首次获得

和嫦娥三号相比,嫦娥四号着陆精度的要求更高,并要采 取几乎垂直的降落方式。嫦娥四号的首选着陆地点,是位于 月球背面南极艾特肯盆地中部的冯·卡门撞击坑。该着陆区 面积比虹湾地区小了许多,但是月球背面山峰林立、大坑套 小坑,很难找出更大、更平坦的地方供嫦娥四号安身。

月球背面可以屏蔽地球无线电干扰,对许多科学研究 项目来说具有天然优势。根据科学目标和着陆区域的变 化,科研团队为嫦娥四号配备了8台有效载荷。其中,着 陆器携带了地形地貌相机、降落相机、低频射电频谱仪 等,巡视器装有全景相机、红外成像光谱仪、测月雷达等。

耿耿星河