

本报记者 张佳星

犹如大力水手爱吃菠菜,这款 CAR-T要"吃"四环素才工作—— CAR-T是一种出现了很多年,但近几年才得以临床应用的新 型细胞疗法。日前,《分子科学》登载了我国科学家对于CAR-T安 全性的研究工作:上海海洋大学国际海洋生物科学研究中心、比昂 生物等多个单位合作,运用我国拥有自主专利的慢病毒载体技术, 将"四环素调控"的基因开关整合到时下最广泛使用的白血病治疗 手段 CAR-T中,实现了对 CAR-T细胞的控制,只有当 CAR-T感受 到四环素这一特定化合物的存在时,才会启动"格斗"模式,勤恳杀 敌,而一旦有指标表明T细胞有"杀红眼"的迹象,只需停止四环素 的供应,CAR-T格斗士就会缺乏能量宕机,防止对机体的"自杀式" 损伤。

T细胞"火力全开",伴随可怕"风暴"

免疫疗法的出现,使得人体内免疫系统 被"争取"过来,通过对T细胞加装体外基因 元器件或重启免疫杀伐功能,形成对抗肿瘤 的"生力军"。目前,治疗白血病有效率最高 的方法为CAR-T疗法,是通过将T细胞导 出,在体外装上有"导航""侦测"作用的 CAR(嵌合抗原受体),再回输体内对付癌细 胞,但T细胞的进攻"火力"会由于人工的干 预,而不受体内调控机制的控制,"失控"的情 况下很可能造成严重的细胞因子释放综合征 (CRS)

论文通讯作者、上海海洋大学特聘教授杨光华解 释,细胞因子风暴是由T细胞、巨噬细胞和肿瘤 细胞之间的相互作用引起的。由于"重装战 士"T细胞有导航和侦测系统,它能够敏锐地 感受到肿瘤细胞的存在,细胞内通路进而被 激发,释放大量的细胞因子,这些细胞因子正 是免疫细胞杀伐肿瘤细胞、能够使其凋亡的"重 要火力"。

"细胞因子引发的风暴是 CAR-T治疗中 不可回避的。"杨光华说,它不但是治疗中的副 作用,也是治疗肿瘤的临床表现。

美国女孩艾米丽(Emily)是首位CAR-T 治愈的白血病患儿,她有着可怕的"风暴"经 历。据记载,在细胞注射到体内后,艾米丽

迅速发烧,血压骤降,重度昏迷,在重症监护 室里靠呼吸机熬过了两周。当时医生们已 经觉得她不可能活下来了。检测报告显示, 她体内的IL-6蛋白激增,这表明她的免疫系 统正在不断攻击自身。随后,医生决定给她 使用一种免疫抑制药物阻止这种自身攻 击。用药后几小时内,艾米丽的情况立即变 好,进一步检测结果显示,她体内的癌细胞 消失了。

可见,CAR-T诱发"风暴"不可避免。但 由于 CAR-T 拥有 80%—90%的高治愈率,使 和药物管理局(FDA)批准可用于临床,并于今 年4月被批准进入美国医保。

如何让拥有高治愈率的 CAR-T 告别 高风险?学界进行了大量的研究,并提出 多种技术路线,例如施用免疫抑制药物、植 入诱导型自杀基因系统、严重情况需采用 激素处理等,但目前"风暴"并发症仍是其 成为标准医疗护理的障碍。业内普遍认 为,CAR-T应用的难点并不集中在前期的 细胞治疗,而在于后期的副作用处理及质

"抑制剂的'补救'很难掌握主动权。"杨光 华表示,通过基因元件的"供能"控制将更具有 主动权,也有更多地可操作性。

变病毒为友军,给T细胞加个"遥控器"

"CAR-T技术专利几乎被美国涵盖。"杨 光华说。实际上,美国医疗领域仍在不断探索 新机制,例如今年4月《自然》报道,纪念斯隆-凯特琳癌症中心(MSK)发现预防"风暴"的新 细胞理论以及新抑制剂并已经申请专利。

"我们不能跟着别人的思路对'风暴'进行 控制,那到应用时会遇到'专利门槛'。"杨光华 说,为此,他带领团队从2009年开始从另一个 角度入手,试图给T细胞加个"遥控器",增加 CAR-T技术中人们对T细胞的控制力。

"慢病毒载体是人们进行基因工程操作 的一个有效工具。"杨光华说,慢病毒载体和 病毒一样能够"侵入"细胞,但并不具有毒性, 能把目标片段插入目标细胞中,从而实现基

要把病毒"驯化"成友军并不容易,临床要 求严格,并且大规模生产和纯化非常困难。杨 光华团队试图通过慢病毒载体对 CAR-T 进 行改良,并使其实现工业化生产,同时依托该 技术成立了上海比昂生物医药科技有限公 司。"不同于常见的化学合成药物,基因药物的 大规模生产与纯化非常困难。目前在基因载 体大规模生产上,比昂生物的纯化率已经比国 际同行的高10倍。"杨光华说,慢病毒载体的生 产包含了质粒获取、细胞转染、病毒收集与纯 化等一系列复杂的步骤,每一个步骤都会影响 最后获得的载体活性,因此需要在工艺上不断 优化,才能得到高质量的载体。

在转导过程中,团队对载体用量、转导条 件、T细胞培养、增强剂的使用等关键条件进 行了探索与优化,最后取得成功。"所有的技术 都已申请了专利。核心发明专利已经由国际 专利体系PCT授权。"杨光华说,"我们同时具 有病毒类载体大规模生产工艺专利技术,可满 足国内外制药公司、医院等对 CAR-T 可诱导 慢病毒的需要,用于Ⅰ期和Ⅱ期的临床实验。'

体外实验证明,"四环素调控系统"高效

"开关系统通过基因合成、酶切连接等分 子生物学技术,我们将'四环素调控系统'与 CD19-CAR结构一起整合进慢病毒载体中。" 杨光华说,这样在对T细胞进行CAR改造的 "四环素遥控器"也就同步装配了

服用四环素后,进入人体的CAR-T就开 始发挥作用;停止服药后,CAR-T将不再表 达,而且能通过药物剂量来控制CAR-T疗效 的强弱。这样带来的好处是当患者出现难以 承受的不良反应时,停止服用四环素就可以让 患者体内发挥作用的 CAR-T 停下来, 当患者 耐受性逐渐转好之后,又可以通过服药继续开 始治疗。在间隔期间,B细胞可以恢复,增强 抗癌效果。

"临床前的基本研究,取得了效果非常好 的数据。"杨光华说,在此次研究中,他们通过 将"四环素调控系统"结合到CD19-CAR构建 物中,开发出新的诱导性细胞iCAR19 T。

试验数据表明,新的iCAR19 T细胞增

殖、细胞因子产生、CAR表达、CD19特异性细 胞毒性强。用四环素衍生物诱导48小时后,诱 导细胞的相对 CAR 表达量是未诱导细胞的 5 倍,说明四环素的施用能激发"四环素战士"的 战斗力。此外,经四环素衍生物处理的细胞对 靶细胞有非常显著的高特异性裂解。这些结 果表明植入系统成功地控制了iCAR19 T细 胞的活性。"我们对T细胞的控制力越强,临床 安全性将越强。"杨光华说,新的细胞同时保持 了强大的抗肿瘤作用。

"这项技术在实际应用于人体之前还需要 经过动物实验、临床试验等多个步骤验证其安 全性和有效性。我们正在针对实际使用过程 中可能遇到的问题,对这一技术做进一步优化 调整,以尽快开展体内的实验验证。"杨光华 说,团队的目标是临床应用,因此在实验阶段 就遵循 GMP 生产标准, 所有的制造工艺和随 后的检测都在GMP设施中进行,基因载体的 质量控制也严格遵循FDA的指导原则。

靶向药物:让基因组中"捣乱"分子保持沉默

吴纯新 本报记者 刘志伟

从开刀到化疗,从民间偏方到进口"神药",人 们谈癌色变,癌症患者及其家人煎熬难耐。时下, 癌症靶向治疗药物备受推崇,这些药物的工作原理 是什么?如何减轻或修复导致癌症的基因组损伤?

近日,武汉大学基础医学院李枫教授团队和 中国科学院北京基因组所吕雪梅研究员合作,在 肿瘤学研究领域的国际权威杂志《癌症研究》上 在线发表论文称,他们发现组蛋白去甲基化酶 (KDM4B)在肿瘤细胞中扮演重要角色,或为癌 症治疗找到一个全新靶点。

一类随机"跳跃"的重复序列

什么原因会造成基因组受损或突变,进而诱 导癌症发生?

研究表明,人的基因组中存在一类可以"跳 跃"的重复序列,在漫长的历史演变中扩增或

者改变位置。这种序列称为转座子,其中有一 类RNA转座子,又称为逆转录转座子,以RNA 为媒介进行转座,其复制方式通常被形容为 "复制一粘贴"模式,即首先通过转录合成RNA 中间体,再以该RNA为模板逆转录合成DNA 并整合人基因组其他位置。

转座子于基因组而言,是一把双刃剑。"跳 跃"在基因组的进化中起到了重要作用,而随机 无序的"跳跃"会破坏基因组,造成不稳定性,进 一步损伤基因组,导致基因突变。

通俗来说,这种"跳跃"好比在道路上开车, 在恰当时间、合适位置进行正确超车,既可提高 通行效率也有益于道路畅通。若在道路中随意 穿行、强行超车、别车,就会造成道路拥堵,甚至 交通瘫痪,此时,就得寻求外力帮助。逆转录转 座子就是基因组中的"捣乱"分子,它们越活跃, 基因组损伤越大。

抑制 KDM4B,减轻基因组损伤

近年研究表明,逆转录转座子在肿瘤组织中

拷贝数增加,而且更活跃,但其调控机制和生物 学功能还不是很清楚。LINE-1就是其中一种, 它在基因组中含量较大,平时是沉默状态,但在 肿瘤细胞中却显得比较活跃。

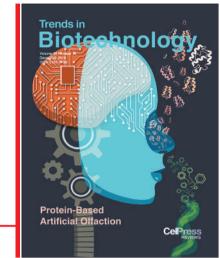
在武汉大学博士生向莹为第一作者、李 枫教授和吕雪梅研究员为共同通讯作者的论 文中,课题组发现KDM4B是LINE-1的转录 调控因子,并驱动功能活跃的LINE-1在基因 组中跳跃,引起DNA损伤以及基因组的不稳 定,从而可能促进肿瘤的发生发展。研究还 首次揭示了KDM4B对逆转录转座子的调控, 并与基因组不稳定联系起来,从全新角度解 释了KDM4B在肿瘤细胞中高表达的致病分

KDM4B能催化"H3赖氨酸9三甲基化 (H3K9me3)"这一组蛋白的去甲基化反应,在乳 腺癌、结肠癌、卵巢癌、肺癌和前列腺癌中均有高 表达,在肿瘤发生发展中所扮演重要角色。李枫 课题组系统性分析了H3K9me3在全基因组元件 中的分布,结果显示很大部分富集在LINE-1元 件,而受 KDM4B 调控的 H3K9me3 主要分布在

功能活跃的LINE-1上。

进一步研究发现,过度表达KDM4B后的 H3K9me3去甲基化,会导致LINE-1拷贝数、 转座活性和 DNA 损伤程度增加,而使用 KDM4B抑制剂,能减轻LINE-1介导的DNA

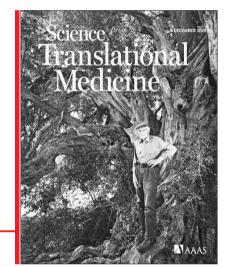
卤水点豆腐,一物降一物。KDM4B通过激 活LINE-1促进DNA损伤,反过来抑制KDM4B 也可减少LINE-1介导的DNA损伤。


李枫表示,他们团队的研究目标就是不断找 寻癌症治疗的靶点,一个一个去攻克,而对 KDM4B的功能抑制,就是又一个全新靶点。

李枫介绍,世界范围内,癌症治疗的靶点 已找到不少,靶向治疗药物也成为研究热点。 目前,在不开刀、不化疗情况下,已有通过靶 向治疗让人体肿瘤细胞逐步减少甚至检测不 到的案例。

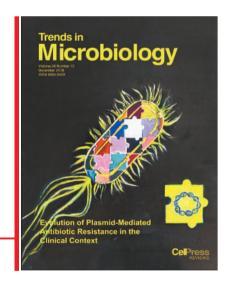
下一步,他们将开展KDM4B抑制剂的动物 试验、小鼠癌症模型验证,验证其作为靶标在肿 瘤治疗中的可行性和安全性,为人体临床研究做 准备。

┗對面故事


소 识别气味分子工嗅觉系统做到了

《生物技术》 2018.12

动物的嗅觉系统依赖于蛋白质、嗅觉受体(ORs)和气味结合蛋白 (OBPs),作为它们的自然感知单元来检测气味。葡萄牙里斯本新大学化 学系亚美尼亚·巴尔博萨等研究人员近年发现,这些蛋白质还可以作为气 相生物传感器的分子识别单元。此外,气味分子与嗅觉受体或气味结合 蛋白之间的相互作用是设计具有可调气味选择性的肽的灵感来源。研究 人员根据人工嗅觉的未来发展,综述了利用嗅觉受体、气味结合蛋白和多 肽等生物单元研发气体生物传感器的最新进展,重点介绍了利用生物成 分检测气相分析物的实例。


> 发现治疗: 发现治疗: 运抗 动体

《科学·转化医学》 2018.12.5

肌萎缩性侧索硬化症(ALS)又叫运动神经元病,其特征是存在超氧 化物歧化酶1(SOD1)等异常形式的蛋白质,这些蛋白质在神经元中积 累,然后退化死亡。瑞士苏黎世大学再生医学研究所托拜厄斯·韦尔特等 研究人员,从一组健康的老年人中提取了一种人类抗体,该抗体能够识别 肌萎缩性侧索硬化患者脊髓组织中超氧化物歧化酶1异常。当应用于肌 萎缩性侧索硬化动物模型时,该抗体可以延缓运动损伤的发生,延长动物 的生存时间,减少神经元的退化和超氧化物歧化酶1聚集物的积累。这 些结果表明,该人类抗体在涉及超氧化物歧化酶1错误折叠的肌萎缩性 侧索硬化治疗中具有潜在价值。

> 细 抗菌 生质 素粒 耐 驱 药 动

《微生物学》 2018.12

> 抗生素耐药会大大增加重症患者的死亡率,成为临床急待解决的难 题。抗生素耐药基因在细菌间的水平传播受细菌质粒的驱动,促进了耐 药的进化。至关重要的是,在临床环境中特别成功的耐药质粒和细菌克 隆之间存在着特殊的联系。然而,这些关联背后的因素仍然未知。最近 的体外证据显示质粒在细菌中能产生适应性,这些适应性还能通过补偿 性突变得到缓解。西班牙马德里拉蒙卡哈尔医院微生物学系和流行病学 和公共卫生网络研究中心科学家桑·米兰认为,质粒施加的适应性和随后 的缓解可能决定质粒和细菌在临床环境中的关联是否成功,从而形成抗 生素耐药性的体内进化。

(本栏目主持人:陆成宽)

(本版图片除标注外来源于网络)

扫一扫 欢迎关注 生物圈1号 微信公众号 🔳

