

染色体数不均等的矛盾,雌性骡子卵巢内卵

母细胞无法进行减数分裂,从而无法产生可

出骡驹的现象,提出了一系列解释。如1939

年被报道的"回归论"认为,母骡子只有产生

含马或驴的染色体组合的卵子时,才具有繁

育亲缘假说"认为,杂交个体在进行减数分

裂时来自母方的染色体优先保留在卵细胞

内,容易形成只含有母方染色体组成的正常

单倍体卵子,导致杂交个体可育,这种骡子

可以经过与马或驴的回交,生出纯粹的马或

驴。但是随后有科学家对多匹母骡子生育

的后代进行染色体核型分析,发现其染色体

育能力,而且其后代为纯种的马或驴

在此基础上,国际遗传学界针对骡子生

而在1953年被学界提出的"动物杂交可

覆了这一常识。

作为马和驴的杂交 后代,骡子从进入人们 的生产生活中起,其不 能生育的特性就已被人 们熟知并作为常识固 化。然而近一年多来国 内的两个真实报道,颠

不孕不育的骡子咋又能生了?

胡红波 本报记者 张景阳

近日,内蒙古赛科星家畜育种与繁育生 物技术研究院从河北省围场蒙古族自治县购 得一只由骡子生育出的小骡驹,并组织团队 对其进行研究,旨在寻找出骡子可以生育的

成常识。目前,学界已经找出了可被普遍认同 的"骡子不孕不育"的原因所在,但是面对偶有 发生的骡子下驹的个例,遗传学界还是一头雾 水,众说纷纭。骡子到底能不能生育,也成为困 扰世界遗传学界的一个谜题。

骡子生驹个例颠覆固有认知

作为马和驴的杂交后代,骡子从进入人们 的生产生活中起,其不能生育的特性就已被人 们熟知并作为常识固化。然而近一年多来国内 的两个真实报道,颠覆了这一常识。

2017年3月出现在网上的一则报道称,河 北省围场蒙古族自治县农民邱志强家的一头母 骡子生出了一只健康的小骡驹,成为当地当时 最吸人眼球的新闻。新闻视频显示,小骡驹出 生后表现出与马驹和驴仔相同的行为特征:站 立行走、吃母乳。

围观村民纷纷表示,若非亲眼所见,绝不会 相信骡子下驹,这简直是天下奇闻。在此之前, 山东省某马业公司,一头骡子在技术人员的帮 助下成功产下一头骡驹,此个例被认为是国内 有记载以来,母骡子生育的首个案例。

母骡子会不会像其它马属动物一样,表现出对 骡驹应有的母性。但是经过观察发现,大家的 担心是多余的,骡驹出生后不久,母骡子就开始 舔舐小驹,并出现护犊行为。

惊奇和兴奋之后,技术人员很快开始担心,

解开骡子的生驹之谜还很遥远

李喜和告诉记者:"首先我们很清楚,我 们距离解开骡子的生育之谜还很遥远。百年 来的事实告诉我们,破解骡子的生育之谜,是 一个十分浩繁的技术工程,不可能一朝一夕 完成。我们的实验选取了一个点作为开始, 就是为什么公骡子不能产生精子。'

遗传学界已有研究表明,DDX3Y基因的 缺失突变,会导致严重的精子生成损害,造成 雄性体内精子的显著减少或完全消失。在内 的实验室内,研究小组选取公马、公驴、公马 骡、公驴骡和公骡驹各一头作为研究对象。 合成、PCR 扩增条件、PCR 产物克隆与测序 等方法逐步展开了研究和实验,以期找到骡

子与亲代的DDX3Y基因间的差异。 实验对5种马属雄性动物DDX3Y基因 结构进行了克隆与DNA测序比较研究,结果 表明:公马、公驴、公马骡、公驴骡和公骡驹 两两配对序列相似性很高,最低为公马和公 驴,其相似度也达到了99%;最高为公马骡和 公驴骡、公马骡和公骡驹、公驴骡和公骡驹, 3个对比组合相似度均达到99.9%,5种马属 动物之间仅存在55个碱基的差异。

研究团队成员李少华博士说:"我们试 图从 DDX3Y 入手获取信息,结果显示,我 们的研究方向需要调整,因为实验数据告 诉我们,骡子的DDX3Y发生突变和缺失的

为了解开骡子生育之谜,由内蒙古带血

研究小组带头人、英国剑桥大学 Gurdon

高原动物遗传资源研究中心和内蒙古赛科星

家畜育种与繁育生物技术研究院组成的研究

小组从邱志强手中购买了那只雌性小骡驹,

发育生物学研究所兼职研究员、内蒙古大学

博士生导师李喜和告诉科技日报记者:"近百

年的科学研究,始终众说纷纭,没有从根本

上、通过无可置疑的理论研究结果来解释骡

子的可育问题,甚至对公骡子为何不产生精

子这一问题也没有明确的科学解释。所以我

们成立的研究小组,决定从马属雄性动物

DDX3Y(一种精子发育相关蛋白抗体)基因

克隆测序入手对这一谜题进行探索,通俗地

讲,就是先解释公骡子不育的问题,再以此为

基础探索为何出现公母骡子可生育的问题。"

并对其展开研究。

"首次实验检测比较了马属雄性动物及 其杂交后代的 DDX3Y 基因序列,同时预测 了氨基酸编码特征,进一步分析了基因进化 的亲缘关系,为下一步研究 DDX3Y 基因功 能与公骡子不育调控机制提供了基础科学 研究。"李喜和说。

研究小组在得出这一轮实验结果的同 时,也产生了新的猜想和计划。李少华表示 下一步,一方面他们将着重从新购来的骡驹 入手进行研究;另一方面,通过新的实验来印 证猜想:"基因拷贝数多能增加精原细胞蛋白 的表达量,这样可以避免在减数分裂过程中 若Y染色体不与X染色体配对导致的基因缺 失,确保与精子生成关系密切的基因表达。 骡子的染色体数目为63条,配对容易紊乱, 我们猜想是否DDX3Y基因拷贝数很少,发 生丢失的几率很高,继而导致精子发生阻 滞。这一猜想,还有待于我们新一轮实验的 印证。"

不能自圆其说的骡子生育理论

骡子并不是动物界自然进化出的物种, 而是马和驴杂交之后的产物,但因其体格健 壮、寿命长,自古就成为畜力使用的不二之

选。据科普资料介绍:骡子长得比驴大,又比 马强壮,它的力量表现在腰部,因其盆骨不能 开合,故不能产子。但是这种说法似乎远远 不能从遗传学上解释骡子为何不能生育。 1916年,科学家首次从细胞学的角度论

述了雄性骡子不育的原因。他指出,骡子的 父母(马和驴)染色体数不均等,造成了减数 分裂阻滞而导致雄性骡子无精子产生,从而 失去繁殖能力。

1973年,科学家又确认了雌性骡子不孕 原因:马有64条染色体,而驴有62条染色

冰架是极地冰盖流入海洋后漂浮在海洋中的 部分。南极盛产冰架,之前很多研究论文都预测 地球在未来几十年后海平面上升多少的命运,取 决于南极冰架。正因如此,南极冰架,尤其是南极 洲最大的罗斯冰架,一直是科学家研究的焦点。

据媒体近日报道,科学家用34台地震监测器 监测南极罗斯冰架的变化,在分析罗斯冰架上的 地震数据时,意外录下了冰架的"歌声"。这项新 研究的主要作者、科罗拉多州立大学地球物理学 家和数学家Julien Chaput形容:"这有点像你在 冰架上吹笛子。"

该研究发表在《地球物理研究快报》上。那 么,冰架为何会"唱歌","歌声"又透露出什么信 号?记者就此采访了相关专家。

冰架怎么会发出嗡鸣

"地震监测器可以及时捕捉到冰架振动信 号,这是国际上目前对冰架实地监测的常用手 段。"北京师范大学全球变化与地球系统科学研 究院院长程晓告诉记者。

罗斯冰架是一大片漂浮的冰川,从南极中部 的高原一直向外延伸800千米,是一大片绵延不 断的冰崖。为更好地了解罗斯冰架的物理特性, 研究人员将34个极其敏感的地震传感器埋在了 它的积雪表面下。

从2014年底到2017年初,这些传感器让研 究人员能够监测冰架的振动,并对其结构和运 动进行研究。但让他们意外的是,监测器捕捉 到了大量诡异的"嗡鸣声"。这种声音需要科学 家经过特殊处理(频率加大1200倍),才能被人 耳听到。

那么冰架为什么会"唱歌"呢?原来冰架表 面有一层如同毯子一样的粒雪层,强风掠过冰架 表面时与表层粒雪接触就会发出声音,如同沙漠 里风掠过沙丘会发出像鼓一样的声音一样。

程晓认为这项研究最让人觉得了不起的地 方,是我们通常把这些环境信号当做噪声滤除 掉,但美国科学家却进一步去分析这些噪声的频 率,进而找到了监测南极洲冰架的"新"方法。

"歌声"起伏告诉我们什么

科学家们发现,冰架的"歌声"不是一成不变 的,而是有高低起伏。其起伏主要与两个因素有 关,一是冰架表面的变化,二是风的变化,就像吹 笛子一样,堵上不同孔、吹不同强度的气就能演 奏不同的旋律。

冰架表面的主要变化过程包括雪面积累、融 化、雪丘形成与变化以及冰裂隙的形成等,是冰 架受大气、海洋作用影响后的反映。而风的变化 则与地球系统的变化密切相关。

罗斯海地区下降风不断增强的观测事实表 明,全球变暖使得海陆气压梯度增加,导致下降 风强度增大。下降风强度增大又可能导致近岸

冰间湖海冰产量增加,冰间湖表层海水盐度增 加、密度增大,可能使得底层暖水上翻加大,对冰 架底部和表面产生影响,导致冰架底部和表层发 生融化、形成裂隙而发生崩解,加速海平面上升。

因此,冰架"歌声"的起伏不是一个孤立的现 象,它与全球气候变暖密切相关,可以引申到地 球系统的多方面变化。通过冰架声音的变化,科 学家可以判断冰架结构是否改变、冰山融池或冰 裂缝是否正在形成。

奇观

震撼唯美 银河星光映照海岸线

岁的学生约瑟夫拍摄的 星空海滩照片走红网

尔郡的海岸线上,画面震撼而唯美。为了拍摄这组照片,约瑟夫经常 凌晨便起床出门,这次他使用了长曝光技术捕捉银河系的唯美瞬 间。他的这组照片获得了许多摄影奖项,包括AA出版社颁发的2018 年度风景摄影师的青年奖,并将与今年所有人围决赛的作品一同出 版。他称拍摄这些照片是一种"令人敬畏的体验",具有治愈效果,

场面壮观 法国椋鸟密集飞行

近日,成千上万只椋 鸟出现在法国东北部上 空,它们成群结队地飞 行,在空中变换出多种队 形,场面异常壮观。成千

上万只鸟儿一起飞行时。翅膀振动发出的淙淙声可以持续26分钟,有 时甚至长达50分钟。人们对于椋鸟大规模飞行的原因知之甚少,许多 人认为这可能是为了躲避捕食者。椋鸟的自然栖息地包括林地、农田、 草地、高地和湿地,城市和郊区也有它们生活的踪迹

我最摇摆 海豹随钥匙扣晃头

报道,一则走红网络的视 频显示,在韩国首尔一家 水族馆内,一名女子正与 一只海豹玩得不亦乐乎。

该女子名叫马塔,当时她正坐在玻璃水池边,手里拿着一个钥匙 扣。正在这时,一只海豹看见了她。马塔拿着钥匙扣左右稍微晃动 了一下,好奇的海豹宝宝也在玻璃墙内跟着摇摆着小脑袋。马塔见 状,继续微笑着晃动钥匙串,小海豹也十分配合地摆动着身体,玩得

造型蠢萌 小飞象章鱼现身海底

据国外媒体报道,近 日,科学家在美国加利福 尼亚深海发现一只可爱 的"小飞象章鱼"。他们 使用遥控操作装置在蒙

特雷湾国家海洋保护区戴维森海底山勘测时,发现了幽灵般的小飞象 章鱼。它拍打着一对像翅膀的鳍,之后利用反向雨伞状结构使身体加 速游动,在"雨伞"张开的时候,可清晰地看到内部有8个触臂,每个触 臂带有一个吸盘和两个卷须。

(本版图片来源于网络)

扫一扫 欢迎关注 科技之谜 微信公众号 🔳

