北极冻土里的碳正加速向大气排放

科技日报北京8月7日电(实习生郭子 朔)据物理学家组织网近日报道,通过参考北 极圈脆弱性实验(ABoVE)数据,美国国家航 空航天局(NASA)领导的一项新研究发现,在 阿拉斯加北坡冻原生态系统中,碳在冻土中 的保留时间比40年前减少了约13%。这意味 着那里的碳循环正在加速,且速度比北冰洋

NASA 喷气推进实验室(JPL)的研究人 员安东尼·布鲁姆说:"温度变暖使得冻原

生态系统展现出其他特征:北部森林逐渐 形成。NASA 陆地卫星(Landsat)和中分辨 率成像光谱仪(MODIS)卫星图像在过去几 十年中的观测显示,灌木和树林在向北迁 移。释放到大气中的碳和被吸收、转化的 碳会不断消补,从而达到一个相对的平衡 状态,这就形成了北极的碳循环。而这种 平衡一旦被破坏,其影响和危害就会远远 超出北极圈。"

在北极夏季,较暖的温度融化了最上层

冻土层,并使得从前被冻结的有机物被微生 物所分解,在这一过程中,二氧化碳会排放 到大气中。同时,树木植被繁茂生长,通过 光合作用吸收大气中的二氧化碳。但随着 气温的升高,碳在北极土壤中的储存时间在

国立首尔大学博士后、JPL研究员郑秀忠 (音译)说:"这两种反应之间的平衡状态将决 定北极圈生态系统未来二氧化碳含量的减少 或增加,根据目前的研究表明,后者更有可

能。与此同时,我们预计北极地区碳的滞留 将导致全球大气中的二氧化碳含量发生更快 且具有明显季节性的长期性变化。"

研究团队将美国国家海洋和大气管理局 (NOAA)和阿拉斯加天文台40多年二氧化碳 地表测量数据与标准生态系统碳平衡模型相 结合,从而得出碳从阿拉斯加北坡的进出速 率。该碳平衡模型曾表明了碳循环速度的增 加,但经后期长期观测卫星、大气及地表测量 数据分析,这种增速远超预估。

温升控制在1.5℃,将显著减少"危险"事件

中国学者分析全球季风区极端降水的变化和影响

┗今日视点

本报记者 张梦然

季风,是在大陆和海洋之间大范围的、风 向随季节有规律改变的风,伴有雨季和旱季

在全球陆地季风区,极端降水会随不同 全球增温阈值而变化。中国科学院大气物 理研究所周天军研究团队8日在《自然通讯》 在线发表文章,揭示了在《巴黎协定》温升目 标下,全球季风区极端降水事件的变化及其

科学家们指出,若将全球增温控制在 1.5摄氏度,较之2摄氏度温升目标,将能显 著减少对"危险"极端降水事件的暴露度。

季风的广泛影响

世界上著名的季风区,通常被划分为三 部分,即亚洲一澳洲季风区(简称"亚澳季 风",包括著名的印度季风/南亚季风、东亚季 风、西北太平洋季风和澳洲季风),非洲季风 (含北部非洲季风和南部非洲季风)和美洲季 风(含北美季风和南美季风)。

得益于充沛的季风降水,陆地季风区生 活着全球约三分之二的人口,是人口分布密 度最大的地区之一,尤其是在南亚和东亚季 风区。与此同时,在异常的季风活动作用下, 季风区也是全球陆地范围内受极端降水和洪 涝灾害影响最大的地区之一。

譬如说,2018年北京"7.16"暴雨事件,持 续时长达58小时,最大小时雨强仅次于2011 年"6.23"暴雨,车辆和种植业保险估损均超千

而日前的日本"平成30年暴雨"(即2018 年6月28日至7月8日期间的暴雨)已造成 209人死亡,成为自1982年长崎县水灾造成

极端事件发生频率将 增加

科学家认为,在全球变暖的背景下,大 气持水能力增加,理论上将增强极端降 水。而预估和理解未来极端降水及其风险 的变化,对于社会可持续发展、减缓与适应 气候变化策略的制定与实施,都具有至关

2015年12月,《联合国气候变化框架公 约》缔约方大会通过《巴黎协定》,正式将"2 摄氏度温升目标"纳入大会成果,并提出 "力争把温升目标控制在较工业革命前上 升 1.5 摄氏度以内"。1.5 摄氏度温升目标 问题,特别是1.5摄氏度温升较之2摄氏度 温升目标所能够避免的气象灾害风险和减 小的影响,成为迫切需要国际科学界回答

此次,中科院周天军研究团队利用参 加第五次耦合模式比较计划(CMIP5)的 多模式气候预估数据,结合不同共享社 会经济路径(SSP)下的人口预估数据,探 讨了从1.5摄氏度到2摄氏度、3摄氏度和 4摄氏度等不同温升目标情景下,全球季 风区极端降水的变化及其对人口的影 响。结果表明,极端降水对全球增温的 响应表现为两方面,即平均态和变率均

研究认为,强度极强且影响力高的"危 险"极端事件(例如"20年一遇"的极端降水 事件)发生频率将显著增加。这将导致季风 区对这类"危险"极端降水事件的暴露度随 温升而增加。围绕历史记录中10年或20年 一遇的极端降水事件在未来如何变化,研究 表明,若将全球增温控制在1.5摄氏度,则较 之2摄氏度,这类事件所影响的季风区面积

7月8日,日本冈山县仓岛市,从空中俯瞰被洪水淹没的房屋

图片来源:《大西洋月刊》官网

20%-40%。极端事件的"危险"等级越高, 1.5摄氏度较之2摄氏度温升目标能够避免

控制温升作用显著

可以说,《巴黎协定》所提出的1.5摄氏 度温升目标,较之2摄氏度温升目标,能够 显著减少极端降水事件对自然和人类社会 的影响,这对于人口众多且分布密集的全 球季风区尤为重要。基于多种极端降水研 究指标的比较分析表明,这一结论不依赖 于"危险"极端事件的定义方法、RCP8.5(高 浓度)和RCP4.5(中低浓度)两类温室气体

这项研究还比较了全球三大季风区(即 亚澳季风区、非洲季风区、美洲季风区)极端 降水变化的异同点,团队发现,在各子季风区 中,南非和南亚季风区是受2摄氏度较之 1.5 摄氏度温升目标的0.5 摄氏度额外增温影 响最大的敏感地区。这两个地区也是众所关 注的气候脆弱区。

该研究揭示了控制进一步温升对于减少 极端洪涝灾害风险具有显著作用,国际社会 需要围绕着减缓气候变化而共同努力。同 时,非洲、南亚这些气候敏感区和脆弱区需要 更多的国际关注,以帮助其发展更为有效的 适应措施,更好地应对极端气候事件的不利

美开发实验性寨卡疫苗 小鼠测试证明安全高效

科技日报华盛顿8月6日电(记者刘海 英)美国俄亥俄州立大学的研究小组开发出 一种实验性寨卡疫苗,开创性地引入了非结 构蛋白1(NS1)。小鼠测试表明,该疫苗安全 高效,只需一剂即可引发免疫反应,防止寨卡 病毒后期感染。研究人员在《自然通讯》杂志 上发表研究论文称,该疫苗很有希望成为人

类寨卡病毒疫苗的候选。 自寨卡病毒 2015 年开始在南美肆虐以 来,许多科研人员开始进行相关疫苗研究。 他们将目标集中在前体膜蛋白(prM)和包膜 蛋白(E)上,但很少对NS1在寨卡病毒特异性 免疫应答和保护中的作用进行探究。时至今 日,虽已有寨卡疫苗开始进行临床试验,但尚 未有人类可用的疫苗出现,使用驱蚊剂、穿长 衣长裤等预防性手段依然是防止寨卡病毒的

此次俄亥俄州立大学研究小组在开发

疫苗过程中,突破性地引入了NS1,将 prM、E和NS1都纳入到疫苗之中。新疫 苗以减毒的水疱性口炎病毒为载体,联合 表达这三种蛋白基因。小鼠测试表明,单 剂新疫苗即可诱导产生寨卡病毒特异性 抗体和 T 细胞免疫反应,从而提供对寨卡 病毒的防御能力。而进一步研究显示,三 种蛋白组合的效果要明显高于prM和E两 种蛋白组合,而即使是 NS1 这一种蛋白,

也能够在小鼠感染寨卡病毒时为其提供

研究人员指出,将NS1引入寨卡疫苗研 究是一项创新,相关研究也证明,其在寨卡病 毒特异性细胞免疫反应中具有重要作用。新 疫苗至少在短期内是安全有效的,很有希望 成为人类寨卡疫苗候选之一。该疫苗仅需一 剂即可引起足够的免疫反应,这对于资源贫 乏的地区来说,更具价值。

中远"天恩"轮 在韩国补油

8月7日,在韩国釜山海域,船员进行燃油

中远"天恩"号货轮7日在韩国釜山海域进 入特定锚地,进行燃油补给。这是本次"天恩" 轮北极之行的唯一一次补油。

8月4日从连云港起航后,"天恩"轮一路向 北,将经过白令海峡,进入北极东北航道,沿"冰 上丝绸之路"西行前往欧洲。这是"天恩"轮首 次北极之行。

新华社记者 刘红霞摄

科技日报北京8月7日电(记者刘 霞)据英国《独立报》6日报道,美国科学家 证实,一颗质量约为木星12倍的行星在离 地球约20光年的地方独自流浪,其并不依 附于任何恒星,是使用射电望远镜发现的 首颗此类天体。该行星的大质量和大磁场 强度对科学家来说仍是未解之谜。

研究负责人、亚利桑那州立大学天文 学家麦鲁迪·高说:"这个天体正好身处行 星和褐矮星之间的边界,可以帮助我们了 解恒星和行星的磁过程。"

褐矮星很难归类:它们太大而不能被 称为行星,但又不够大到可被归为恒星。 1995年科学家才首次探测到褐矮星,它们 仍有很多谜团等待揭开。

新确认的行星于2016年由位于新墨 西哥州的甚大阵(VLA)望远镜捕捉到,最 初被认为是褐矮星,科学家此前一直在尝 试研究包括它在内的5颗褐矮星的磁场和 无线电发射。然而,当查看褐矮星数据时, 他们发现,其中一颗名为SIMP J01365663+0933473的天体远比其他天体 年轻,这意味着,它是一颗自由漂浮的行

此外,通常用于区分巨大气态巨行星 与褐矮星的边界是"氘燃烧极限"——约为 木星质量的13倍,而新行星的质量为木星 质量的12.7倍,离成为褐矮星差一点。

类似于地球上看到的北极光,新确认 的行星和一些褐矮星尽管缺乏太阳风,也 有自己的极光。正是这些极光的无线电特 征首先引起了科学家的注意,让他们能探 测到这些遥远的天体,但目前尚不清楚极

不过,分析显示,新行星的磁场极强, 约是木星磁场强度的200倍,这或许有助 于解释为什么它拥有强烈的极光。

高博士说:"研究新行星的磁动力机制 可为我们提供有关此类机制在系外行星上 如何运行的新见解,我认为这些机制不仅 适用于褐矮星,也适用于气态巨行星和岩 石行星。新研究表明,极光无线电发射可 用于发现更多系外行星,包括不属于任何 恒星的流浪行星。"

看多了科幻电影的我们,不仅联想,这 颗磁场奇怪的圆球好像外星人基地啊。宇 宙里应该有很多游离于星系之外的个体 户。只不过习惯了绕着恒星转动的我们,少 见多怪。将来人类能不能搭流浪行星去宇 宙深处呢? 当然,以现在的技术,想想而已。

电 望远镜发 量为木星的 现 阳 系 流

德国可再生能源供电创历史新高

科技日报柏林8月7日电(记者顾 钢)德国联邦能源与水资源经济协会最新 发布的数据显示,近三年来,德国清洁能源 的生产量增加了三分之一,去年可再生能 源发电占德国总电力消耗的36%;今年上 半年生产的清洁能源已经足以供应所有德 国家庭一年平均2500千瓦时的电量。

可再生能源对德国电力供应的贡献越 或大。根据意昂集团的统计,2018年上 半年,风能、太阳能、水电和生物质发电首 次达到1040亿千瓦时,总量增长9%。其 中,风力发电约550亿千瓦时;太阳能发电 增长至210亿千瓦时;生物质发电继续保 持在200亿千瓦时;水力发电总量达80亿 千瓦时。上述统计数据仅包括输入到公共 电网中的电能,而不包括来自私人光伏系 统所生产的电能。

德国2017年陆地上安装了1792个新

的风力发电机组,容量达5.3千兆瓦特。 今年的扩建容量预计将减少三分之一,低 于3.5千兆瓦。风电扩建的减缓让人有些 意外,因为风能发电并不比其他能源发电 昂贵,并且几乎不需要补贴。其下滑原因 在于政策和法规。德国最新修改的新能 源法规中规定了新建风力发电机的招标 程序,并对此提出了限额。在陆地上,所 谓的社区风能发电厂能在招标过程中享 有特权,使其在招标时几乎能拿到全部订 单。然而,从这种特权的正式实施到发电 厂建设,还有很长一段路要走。与此同 时,海上风电扩张势头也逐渐趋缓,这和 陆地上所能达到的电力运输能力息息相 关。海上风能基金会负责人波伊表示,他 们计划在2025年之前至少建造能提供2 千兆瓦特的风力发电站,因为届时电网容

两构造板块"打架"引发印尼大地震

科技日报北京8月7日电(记者刘 霞)印度尼西亚当局称,当地时间5日晚 上,该国龙目岛海岸线附近发生了7.0级地 震。据《科学美国人》官网6日报道,两个 构造板块相撞,一个板块俯冲到另一个板 块之下,是造成此次大地震的"罪魁祸首"。

截至记者发稿前,官方数据显示至少 有105人死于地震,远在巴厘岛的人都有 震感。印度尼西亚国家减灾机构发言人苏 托波·普沃·努格罗霍在新闻发布会上说, 龙目岛北部损坏"非常严重",已造成桥梁 倒塌、停电和道路堵塞。

美国地质调查局(USGS)将震级定为 6.9级,略低于印度尼西亚当局的记录。所 谓祸不单行,《华盛顿邮报》报道称,7月29

日,已有一场6.4级地 震袭击了这一地区, 造成至少16人死亡、 300多人受伤。

USGS 地球物理 学家保罗·卡鲁索表 示:"该地区存在着潜 没(指地壳的板块沉 到另一板块之下),澳 大利亚板块正朝着巽 他板块(Sunda plate) 下方移动,引发了这 两场地震。"

构成印度尼西

亚的许多岛屿恰好坐落于所谓的火环,沿 着太平洋形成一条马蹄形线条,其中存在 好多处构造板块相撞的点。卡鲁索说: "这个地区发生了多起大地震。"据USGS 的统计,2006年7月17日,附近的爪哇岛 发生了7.7级地震并伴随海啸;1994年6 月2日,龙目岛发生了7.8级地震,也伴随

本次地震发生时,当局也发出了短暂 的海啸预警,但龙目岛周围只出现了小海 浪。卡鲁索说,即使龙目岛的地震发生在 陆地上,它也会沿着海岸线向右冲击,导致 山体滑坡进入大海,也可能引发海啸。据 他估计,此次7级地震会有更多余震,不过 强度将低于主震。

一名男子望着一处地震废墟

新华社发(阿贡摄)