2015年5月14日 星期四

3名宇航员推迟 至下月初返回地球

据新华社华盛顿5月12日电 (记者林小春)美国航天局12日说,由 于俄罗斯"进步-M27M"货运飞船最 近发射失败,今年一系列往返国际空 间站的任务都将调整时间,原定于本 周返回的3名空间站宇航员将推迟至 下月初返回地球。

美国航天局当天发表声明说,3 名宇航员返回具体日期尚未确定。空 间站上还有另外3名宇航员,他们将

声明说,下一次俄货运飞船的发 射推迟至7月初,空间站储备的食品 足以供应至今年秋季。搭载新一批3 名驻站宇航员的飞船发射日期将从5 月底推迟至7月底。

此外,美国太空探索技术公司的 第七次货运飞船的发射时间仍在评估 之中,目前的计划仍是不早于6月19

俄"进步-M27M"货运飞船 4 月 28日发射后失控,未能与空间站对 接。5月8日,飞船落回大气层烧毁。

耐药伤寒杆菌 在发展中国家扩散

者张家伟)英国桑格研究所日前发布 公告说,该机构参与的一项国际研究 显示,具有抗菌素耐药性的伤寒杆菌 在许多发展中国家越来越常见,已对 当地公众健康带来很大威胁,有必要 加强监控和预防。

这项研究由全球多个科研机构的 74名研究人员合作完成。他们在英 国《自然·遗传学》期刊上报告说,研究 人员对伤寒杆菌进行了基因研究,发 现这一病菌存在一种名为 H58 的分 支型,它的出现导致伤寒杆菌的基因 结构发生重大变化,因而成为伤寒杆 菌抵御抗菌素的"幕后推手"。

研究报告介绍说,过去30年里, H58型的伤寒杆菌主要在东南亚、西 亚和非洲部分地区传播,在非洲东部 和南部已造成传染病流行。

英国桑格研究所的戈登·杜根参 与了这项研究。他评价说,上述研究 已为将来对这一病菌展开监控提供了 很好的信息框架,可帮助专家更好地 了解这种病菌出现的新变化,以便进 一步推广有效的疫苗和防治措施,遏 制该病菌的传播。

日本开发出 反复蓄热的新陶瓷

据新华社东京5月13日电(记者 蓝建中)日本筑波大学13日发表的一份 公报称,该校与东京大学合作,开发出 了一种能反复蓄热散热的新型陶瓷,有 望用于太阳能发电和工厂排热系统。

筑波大学副教授所裕子和东京大 学研究生院教授大越慎一领导的研究 小组,利用特殊条件烧结用于制造白 色颜料的二氧化钛,制作出一种名为 " λ - 五氧化三钛"的陶瓷。当这种陶 瓷受到光照或有电流通过时,它就能 积蓄热能。此后若向这种蓄满热能的 陶瓷施加一定的压力,其结构就会发 生变化,转变成"β-五氧化三钛"。 这时,其内部积累的热能也会随之散 发出来。反之,如果加热"β-五氧化 三钛",它就会在一定温度下又恢复为 " λ - 五氧化三钛"且继续吸热。由于 这种转变能反复发生,因此可以反复

研制上述新陶瓷的专家认为, 这种新材料很廉价,散热条件不高, 因此有望将其开发成太阳能发电所 需的蓄热材料或用于收集工厂排放 的废热。

在里约热内卢体会 和煦"中国风"

日前,在巴西里约热内卢地铁总站 车务段的早班晨会上,北车长客技术人 员为身后的两台列车新车投入使用布置 各项准备工作。

近年来,相隔遥远的中国好像离巴 西越来越近。在里约热内卢,出行可搭 乘中国生产的地铁列车,过海可乘坐中 国生产的豪华渡轮;想体验中华传统文 化,可以上中国与巴西合办的双语学 校。在这里,"中国风"早已不再意味着廉 价小商品,而是惠及两国民众日常生活的 新华社记者 徐子鉴摄

科学家推出卡片诊断仪和电子皮肤

将个性化医疗再向前推进一步

尔第四届生物传感技术国际会议上,一种可测 量心率和血压的可穿戴电子皮肤,以及能读取 血液和唾液样本的信用卡大小的纸质诊断仪

GUO JI XIN WEN

压、血糖、激素水平的有关信息,甚至能测试他 等待读取数据后,将信息传输到使用者的 元下降到0.5欧元。 们是否感染了耐受抗生素的细菌。这种检测 手机上。

科技日报北京5月13日电 (记者房琳 技术能给病人提供实时的身体机能信息并给 琳)5月12日,在葡萄牙里斯本举行的艾斯维 出最合适的治疗建议,将个性化医疗又向前推

生物传感器能检测并分析病人心率、血 按钮开启机器,把样本放在卡片的右下角, 产,让诊断仪器分析样本的成本从现在的5欧 人决定哪种抗生素更能对症。

"30年前我开始研究电化学的时候,这样 科学院苏州纳米技术与纳米仿生研究所的 软的电子皮肤。

疾病和心脏病,甚至癌症。特纳教授说,这将 元做同样的事情。"特纳教授说,"这是第一次 皮肤,它基于柔性电子科技和纳米技术建造 结束 2500 年来传统医疗的范式,将权利交回 将这种机器整个打印出来。"这意味着他们已 子学中心主任安瑟尼·特纳教授研发的信 与通信技术非盈利机构Acreo合作的结果,他 以负担的疾病检查。例如,打印的卡片测试仪 和他的团队发展了这项技术的两个关键方 用卡大小的诊断仪,使用起来很简单:打开 们正在寻找商业合作伙伴,希望能够大规模生 器可以被制作成抗生素包装的一部分,帮助病 面——让传感器元件更敏感,让材料更具有

弹性。他们已经用碳纳米管和只有几个原 据物理学家组织网13日报道,来自中国 子厚的石墨烯材料制造出超敏感、透明和柔

今日视点

海洋的开发:底蕴丰厚 如火如荼

全新意义的海洋产业呼之欲出

本报记者 邰 举

海洋面积大约是陆地面积的2.4倍。浩 可行性研究成果不断涌现。 瀚的蓝水之下,矿产资源蕴藏丰富。近年来, 海底资源勘探领域取得了许多重要进展,全 日本把研究重点放在海底稀土矿藏上。日 新意义的海洋产业呼之欲出。

技术融合带来勘探变革

在勘探技术领域,技术的融合正在带 来变革。最新的进展包括一项远程勘探 5000ppm(1ppm=百万分之一)。据测算,该 技术,根据开发计划,勘探人员能够在卫 海域1平方公里面积内的稀土矿藏,可满足 星帮助下,从陆基基地远程操控无人勘探 日本一年的工业活动所需。日本政府今年 设备,研究人员可以在陆上研究中心获取 还在继续推进勘探作业,以进一步探明该海 精确的海洋地质数据,进行数据共享和分 析。这一技术将改变勘探船只、人员和设 备的作业方式,大幅缩减勘探经费和时 间,扩大勘查范围。

该计划由日本政府主导,协同日本海洋 卫星、勘探船、无人勘探设备和地面研究中心 重稀土。 通过高速网络连接起来,无人勘探设备采集 到的影像和其他数据将实时传输到地面研究 中心。在此基础上,同时使用多架无人勘探 设备,一次性对大范围海域进行勘探的方案 也在开发之中。

稀土资源引发全球关注

储量丰富的海底矿产资源一直深受重 视。随着勘探技术的进步,新的探矿和开采

最近数年,稀土资源引发了全球关注。 本东京大学和海洋研究开发机构共同研究 发现,在该国小笠原诸岛南鸟岛海域的专属 经济区广泛分布着高浓度的稀土矿藏,储藏 位置在海底2米到4米处,浓度超过 域矿产的分布详情。

日本学者表示,该矿藏稀土成分的有效 含量达到中国代表性稀土矿的30倍以上,且 重稀土比重较高。中国作为全球主要的稀 土生产国,供应了全球约80%的稀土产品, 研究开发机构和信息通信研究机构,将人造 尤其是直流电机和激光器等产品中使用的

此前,日本已经成立了东京大学和三井 海洋开发等机构参与的"稀土泥开发推进财 团",重点开发水深5600米到5800米处稀土 矿的采集和提炼技术。该技术的重点在于将 空气注入海底矿区的泥层,之后通过抽吸作 业完成采矿过程。

有色金属成海底新焦点

近年来,海底硫化物成为重点领域的重

研究发现,海底硫化物富含铜、锌、铅、金、银、 铁等金属元素,是一种潜力巨大的海底矿产

截至2008年,全球发现的热液区不过 100个左右,而到2014年,已有300多个热

化物总含量能够达到10亿吨水平,其中铜 和锌含量约3亿吨,与陆地上新生代块状多 金属硫化物矿床的铜、锌等金属的测算含

2007年至今,中国勘察团组已经发现了

10余处热液区,进入了全球海底热液考察的 前列。中国学者勘探的新几内亚海区索尔瓦 拉海底硫化物1号远景区样品,其中金含量

国际海底管理局通过《多金属硫化物探 矿和勘探规章》后,中国第一个与之签订了矿 区专属勘探权合同,韩国和法国则是第二批 申请勘探权的国家。

可燃冰保持了同样热度

目前,全球30多个国家和地区都在进 行可燃冰(甲烷水合物)的研究与调查勘 探,一些能源不能自给的国家更是对可燃 冰抱有很高期待。此前,日本研究人员宣 布在全球范围首次实现了利用海底地层可 燃冰直接生产天然气的试验工艺。日本产 经省今年年初发布的调查报告显示,截至 2014年,日本已经发现可燃冰可能埋藏点 971个。2015年的勘探计划将精确掌握日 本的可燃冰埋藏量,包括近海和深海可燃 冰矿层的分布状态,以及完成日本领海范 围可燃冰储藏量的统计。

日本还在2014年提出了2018年试生产 可燃冰天然气、2023年实现商业化的庞大计 划,以期一举摆脱能源匮乏的局面。

韩国可燃冰开发项目团此前也在韩国 东海岸专属经济区深达 1800 米的海底,发 现3处海底可燃冰矿层,预计总储藏量超过

有观点认为,日益活跃的海底矿产资源 开发活动正在人类社会经济发展中承担更重 要的角色。信息技术、航空航天技术、原子 能、机械制造等领域的创新成就,以及来自政 府和民间投资的增加,各种海洋勘探领域设 备的建造和升级,将在短短十几年或者几十 年内,以空前的速度提升人类了解海洋、利用 海洋的能力,让海洋成为世界各国可持续发 展的新契机和新支撑。

美军加紧研制战场用"隐身衣" "量子隐形"材料可实现完全隐形

部队研制一种隐身衣,让士兵能在战场上隐 们产品的可行性。 形。军方希望能在18个月内对第一款样品

色龙的系统或者自适应伪装系统可以持续不 体完全消失。

2006年,英国帝国理工学院的理论物理 美军方要求相关公司研制出能像变色龙 围发生弯曲,并使用超材料让物体隐身。然 那样随周围环境改变的伪装织物,它可以在任 而多项实验研究表明,这一现象只对特定波 何温度下工作,并适用于包括沙漠和热带丛林 长或从某一个角度入射的光适用。而且,尽 在内的任何地形。美军方表示:"一种类似变 管科学家们能让光弯曲,超材料也无法使物

目前, Hyperstealth公司仅在其官方网站上 载火箭。 学家约翰·潘德里证明,可以让光在物体周 发布了一些"量子隐形"材料的效果图,而并没 有披露更多的技术细节,这也让许多人对其是 否真正拥有这项技术表示怀疑。克拉默则声 过红外望远镜和热力学设备的追踪。

不过,还是有公司宣称,他们已经研制出 了能工作的产品。如加拿大隐身衣制造商 HyperStealth 生物技术公司首席执行官盖·克 家展示了超材料隐形技术。他们的"量子隐 形"材料可通过折射周围光线来实现完全隐形 的惊人效果。这种材料可以用来制作隐形衣, 不仅能帮助特种部队在白天完成突袭行动,还 春)随着技术的发展,微型卫星的功能越来 航天局计划签订一个或多个合同,以一枚专用 能帮助十兵在遭遇不测时顺利逃生。此外,这 上得到应用,让其实现真正的隐形,帮助部队 在"无形"中完成对敌方的打击任务。

不借助其他技术的情况下实现隐形,甚至可逃 及飞机、改进天气预报和扩大互联网覆盖 业发射公司最终会把发射成本降至商业上可 目前发射微型卫星大多是大型火箭运载

美拟资助研制微型卫星发射用火箭

新华社华盛顿5月12日电(记者林小

越强大,利用微型卫星进行地球观测和通信 火箭把总重60千克的多颗微型卫星一次性发 将于本月公布一份"征求意见书"草案,计划 30千克的多颗微型卫星。发射地点和时间由

美国航天局所说的微型卫星的长宽高 度分别约为10厘米,每颗这种卫星重约1.3 飞行项目主管马克·威斯在为此召开的电话 千克。微型卫星已应用于图像采集和分析 记者会上说,也许美国航天局一开始付的钱 称,他们研制出的"量子隐形"材料完全可以在 等方面,未来它们还能用于追踪观测船只 要比现在搭顺风车的发射方式高,但相信商

大卫星或探测器时的附带任务,美国航天局的

根据该机构公布的"征求意见书"草案,美 资助商业公司研制专门发射微型卫星的运 商业发射公司决定,但必须在2018年4月15 日前完成这一发射任务。

该机构"发射服务项目"业务办公室的

除了在近地轨道上观测地球外,微型卫星 还将被用于深空探测任务。据美国媒体报道, "发射服务项目"希望制定替代方案,提供"风 美国航天局计划明年发射的"洞察"号火星着 险类发射服务",即用专门的火箭把微型卫星 陆探测器,将携带两颗微型卫星,以便在着陆 阶段提供中继信号。

日本推出全球首款6TB固态硬盘

科技日报北京5月13日电(记者王小 和它们一样都采用的2.5英寸的尺寸和 从7月下旬开售世界第一款6TB固态硬盘。 1TB和3TB固态硬盘采用的是19纳米工艺 这将是目前世界上容量最大的2.5英寸串口型 制造的闪存芯片。 固态硬盘。

速度最高可达每秒540MB,写入速度最高可数据中心领域赢得关注。 达每秒520MB。由于采用了该公司自行开 应用。

今年年初, Fixstars 就曾宣布在北美市场的,在很多时候值得为此增加成本。

龙)日本固态硬盘生产商Fixstars公司,宣布将 6Gbps的数据传输接口。有所不同的是,

Fixstars 公司首席执行官三木聪说: 据该公司的公报称,这款固态硬盘型号 "SSD-6000M进一步充实了公司的产品线,我 为 SSD-6000M,就像 U 盘那样的硬盘,内部 们的固态硬盘目前已经具备了和高端硬盘驱 的闪存芯片采用了15纳米制造工艺,读取 动器竞争的实力,相信这些产品同样也能够在

Geek.com 网站高级编辑马修·汉弗莱斯 发的全新主控,这款硬盘能够在整个生命周 称,相对于机械硬盘,固态硬盘的价格目前还 期内都保持良好的I/O(输入输出)性能。 是偏高。要让其成本大幅下降,还需等待相当 这使其完全能够胜任视频录制、医疗成像、 长的时间,因此,固态硬盘要想全面取代机械 大数据分析、网络基础设施和工业中的相关 硬盘,目前来看还不现实。但从另外一个角度 看,两者在性能和速度上的差别是显而易见

据悉,目前SSD-6000M已经接受预定,

销售容量为1TB和3TB的固态硬盘,型号分 别为SSD-1000M和SSD-3000M。SSD-6000M 预计7月下旬开始陆续出货。

科技日报北京5月13日电(记者刘霞)据 断地更新颜色和模式,让士兵在当前环境下隐 英国《每日邮报》网站日前报道,美国军方要 身,这种非火药的解决方案将成为士兵在战场 种材料还有望在下一代隐形战机、潜艇和坦克 有望成为航天发展的新热点。美国航天局 射人轨,或者用两枚更小的火箭各自负载总重 求为其研制"伪装织物"的公司同舟共济,为 上制胜的关键。"承包商将在6个月内证明他